觀察下列等式:
11×2=1-12,12×3=12-13,13×4=13-14,
將以上三個等式的兩邊分別相加得:
11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.
(1)猜想并寫出12020×2021=12020-1202112020-12021(不必寫出計算結果).
(2)直接寫出下列各式的計算結果:
①11×2+12×3+13×4+……+12019×2020=2019202020192020;
②11×3+13×5+15×7+……1199×201=100201100201;
(3)填空:31×4+34×7+37×10+……+32020×2023=2022202320222023.
1
1
×
2
1
2
1
2
×
3
1
2
-
1
3
1
3
×
4
1
3
-
1
4
1
1
×
2
1
2
×
3
1
3
×
4
1
2
+
1
2
-
1
3
1
3
-
1
4
1
4
3
4
1
2020
×
2021
1
2020
1
2021
1
2020
1
2021
1
1
×
2
1
2
×
3
1
3
×
4
1
2019
×
2020
2019
2020
2019
2020
1
1
×
3
+
1
3
×
5
+
1
5
×
7
1
199
×
201
100
201
100
201
3
1
×
4
3
4
×
7
+
3
7
×
10
3
2020
×
2023
2022
2023
2022
2023
【考點】規律型:數字的變化類;有理數的混合運算.
【答案】-;;;
1
2020
1
2021
2019
2020
100
201
2022
2023
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:111引用:3難度:0.6
相似題
-
1.觀察以下等式:
第1個等式;14-1=14(1+11×3)
第2個等式;416-1=14(1+13×5)
第3個等式;936-1=14(1+15×7)
第4個等式;1664-1=14(1+17×9)
……
按照以上規律,解決下列問題:
(1)寫出第5個等式:.
(2)寫出你猜想的第n個等式 (用含n的等式表示),并證明.發布:2025/5/24 11:0:1組卷:151引用:3難度:0.6 -
2.觀察下列等式:
第1個等式:;1+11×3=221×3
第2個等式:;1+12×4=322×4
第3個等式:;1+13×5=423×5
第4個等式:……1+14×6=524×6
按照以上規律,解決下列問題:
(1)寫出第5個等式:;
(2)寫出第n個等式:(用含n的等式表示),并證明;
(3)計算:.(1+11×3)×(1+12×4)×(1+13×5)×(1+14×6)×…×(1+12020×2022)×(1+12021×2023)發布:2025/5/24 13:0:1組卷:545引用:5難度:0.5 -
3.觀察以下等式:第1個等式:
;第2個等式:21-32=12;第3個等式:32-56=23;第4個等式:43-712=34;……;按照以上規律,解決下列問題:54-920=45
(1)寫出第6個等式;
(2)寫出你猜想的第n個等式:(用含n的等式表示),并證明.發布:2025/5/24 11:30:1組卷:110引用:4難度:0.7