某商店出售一款商品,經(jīng)市場(chǎng)調(diào)查反映,該商品的日銷售量y(件)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,關(guān)于該商品的銷售單價(jià)、日銷售量、日銷售利潤的部分對(duì)應(yīng)數(shù)據(jù)如下表所示.【注:日銷售利潤=日銷售量×(銷售單價(jià)-成本單價(jià))】
銷售單價(jià)x(元) | 75 | 78 | 82 |
日銷售量y(件) | 150 | 120 | 80 |
日銷售利潤w(元) | 5250 | 4560 | a |
40
40
元,表中a的值是 3360
3360
.(2)求該商品日銷售利潤的最大值.
(3)由于某種原因,該商品進(jìn)價(jià)降低了m元/件(m>0).該商店在今后的銷售中,規(guī)定該商品的銷售單價(jià)不低于68元,日銷售量與銷售單價(jià)仍然滿足上表中的函數(shù)關(guān)系.若日銷售利潤最大是6820元,求m的值.
【考點(diǎn)】二次函數(shù)的應(yīng)用.
【答案】40;3360
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/18 8:0:8組卷:53引用:2難度:0.5
相似題
-
1.如圖(1),一塊鋼板余料截面的兩邊為線段OA,OB,另一邊曲線ACB為拋物線的一部分,其中C點(diǎn)為拋物線的頂點(diǎn),CD⊥OA于D,以O(shè)A邊所在直線為x軸,OB邊所在直線為y軸,建立平面直角坐標(biāo)系xOy,規(guī)定一個(gè)單位代表1米.已知OD=1米,DA=2米,CD=4米.
(1)求曲線ACB所在拋物線的函數(shù)表達(dá)式;
(2)若在該鋼板余料中截取一個(gè)一邊長(zhǎng)為3米的矩形,設(shè)該矩形的另一邊長(zhǎng)為h米,求h的取值范圍;
(3)如圖(2),若在該鋼板余料中截取一個(gè)△PBD,其中點(diǎn)P在拋物線ACB上,記△PBD的面積為S,求S的最大值.發(fā)布:2025/5/23 16:0:1組卷:103引用:1難度:0.5 -
2.如圖,一小球M從斜坡OA上的O點(diǎn)處拋出,建立如圖所示的平面直角坐標(biāo)系,球的拋出路線是拋物線L1:y=-
+bx的一部分,斜坡可以看作直線L2:y=12x2x的一部分.若小球經(jīng)過點(diǎn)(6,6),解答下列問題:12
(1)求拋物線L1的表達(dá)式,并直接寫出拋物線L1的對(duì)稱軸;
(2)小球在斜坡上的落點(diǎn)為A,求A點(diǎn)的坐標(biāo);
(3)在斜坡OA上的B點(diǎn)有一棵樹,B點(diǎn)的橫坐標(biāo)為2,樹高為4,小球M能否飛過這棵樹?通過計(jì)算說明理由;
(4)直接寫出小球M在飛行的過程中離斜坡OA的最大高度.發(fā)布:2025/5/23 16:30:1組卷:329引用:3難度:0.5 -
3.【綜合實(shí)踐】
某公園在人工湖里安裝一個(gè)噴泉,在湖心處豎直安裝一根水管,在水管的頂端安一個(gè)噴水頭,噴出的水柱形狀可以看作是拋物線的一部分.若記水柱上某一位置與水管的水平距離為x米,與湖面的垂直高度為y米.下面的表中記錄了x與y的五組數(shù)據(jù):x(米) 0 1 2 3 4 y(米) 0.5 1.25 1.5 1.25 0.5
(2)若水柱最高點(diǎn)距離湖面的高度為m米,則m=,并求y與x函數(shù)表達(dá)式;
(3)現(xiàn)公園想通過噴泉設(shè)立新的游玩項(xiàng)目,準(zhǔn)備通過只調(diào)節(jié)水管露出湖面的高度,使得游船能從拋物線形水柱下方通過,如圖2所示,為避免游船被噴泉淋到,要求游船從拋物線形水柱下方中間通過時(shí),頂棚上任意一點(diǎn)到水柱的豎直距離均不小于0.5米,已知游船頂棚寬度為3米,頂棚到湖面的高度為2米,那么公園應(yīng)將水管露出湖面的高度(噴水頭忽略不計(jì))至少調(diào)節(jié)到多少米才能符合要求?請(qǐng)通過計(jì)算說明理由(結(jié)果保留一位小數(shù)).發(fā)布:2025/5/23 16:30:1組卷:1253引用:4難度:0.5