已知2a-b=4,則2a3-a2b+b2-4ab的值為( )
【考點】因式分解的應用.
【答案】D
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:159引用:1難度:0.7
相似題
-
1.學習《第九章乘法公式與因式分解》時,我們借助拼圖驗證了許多乘法公式,反過來,我們也可以利用拼圖,將一些多項式因式分解,這是研究數學問題的一種常用方法.如圖(1),有足夠多的邊長為a的大正方形,長為a,寬為b的長方形和邊長為b的小正方形.
(1)利用拼圖將多項式2a2+5ab+2b2進行因式分解,畫出你的拼圖,并寫出因式分解的結果;
2a2+5ab+2b2=.
(2)若多項式9a2+12ab+kb2(k為正整數)可以用拼圖法因式分解,則k=;
(3)如圖(2),它是由四個形狀、大小完全相同的直角三角形與中間的小正方形EFGH拼成的一個大正方形ABCD.如果每個直角三角形的較短的邊長為a,較長的邊長為b,最長的邊長為c.你能發現直角三角形的三邊長a、b、c的什么數量關系?(注:寫出解答過程)發布:2025/6/13 18:0:2組卷:278引用:2難度:0.5 -
2.閱讀:材料1:只含有一個未知數,并且未知數的最高次數是2次,最高次項的系數不為零,這樣的整式方程叫做一元二次方程.一元二次方程有一種解法是利用因式分解來解的.如解方程:x2-3x+2=0,左邊分解因式得(x-1)(x-2)=0,所以x-1=0或x-2=0,所以原方程的解是x=1或x=2.
材料2:立方和公式用字母表示為:x3+y3=(x+y)(x2-xy+y2),
(1)請利用材料1的方法解方程:x2-4x+3=0;
(2)請根據材料2類比寫出立方差公式:x3-y3=;(提示:可以用換元方法)
(3)結合材料1和2,請你寫出方程x6-7x3-8=0所有根中的兩個根.發布:2025/6/13 6:30:2組卷:1732引用:5難度:0.4 -
3.材料一:已知N為一個四位自然數,若N滿足千位上的數字等于個位上的數字,百位上的數字等于十位和個位上的數字之和,則稱N為“等和數”.
材料二:對于一個“等和數”N,將N的百位數字記為n,千位與百位上的數字之和與十位土的數字的積記為k,令F(N)=3n2+k.
例如:當N=2312時,∵2=2且3=1+2,∴2312是“等和數”:此時,n=3,k=(2+3)×1=5,F(2312)=3×32+5=32;當N=4524時,∵4=4但5≠2+4,∴4524不是“等和數”.
(1)請判斷3543,1211是否是“等和數”,并說明理由;如果是,請求出對應的F(N)的值;
(2)若一個數是某個整數的平方,則稱這個數為完全平方數.已知N是個位上的數字小于十位上的數字的“等和數,將N的各個數位上的數字之和記為G(N),若為完全平方數,求N的所有可能值.F(N)G(N)發布:2025/6/13 12:0:1組卷:273引用:2難度:0.5