綜合與實踐
問題情境:在“弘揚革命精神,傳承紅色基因”實踐活動中,同學們親自動手繪制了五角星,在制作過程中,每一個五角星的制作都會用到一個邊長為8cm的正方形.
動手操作:
步驟1:如圖1將正方形ABCD沿EF所在的直線對折,使BC與AD重合.
步驟2:將四邊形AEFD進行兩次折疊,使邊DF分別落在DA和EF邊上,折痕DG與FH相交于點O,展平后得圖2.

?步驟3:如圖3,將四邊形AEFD折疊,使點E與點O重合,折痕為MN.
?
步驟4:如圖4,將四邊形MNOA折疊,使NM與NO重合,隨后將∠FNO沿NO所在的直線折疊,即可得圖5.沿圖中虛線OP(使∠NOP<30°)剪一刀,展開得圖6.
問題解決:
(1)圖1中,四邊形AEFD的形狀是 矩形矩形;圖6中∠POQ=36°,則圖5中∠NOP=18°18°.
(2)判斷圖2中,四邊形HDFG的形狀,并說明理由.
(3)請你直接寫出所做的五角星中,點O到中心點N的距離.
【考點】四邊形綜合題.
【答案】矩形;18°
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/12 8:0:9組卷:218引用:1難度:0.2
相似題
-
1.(1)[方法回顧]:課本上“三角形中位線定理”的證明.已知:如圖1,在△ABC中,點D、E分別是邊AB、AC的中點.求證:DE=
BC,DE∥BC,證明:如圖1,延長DE到點F,使得EF=DE,連接CF;請繼續完成證明過程;12
(2)[問題解決]:如圖2,AB∥CD,E為AD的中點,G、F分別為射線AB、DC上的點,∠GEF=90°,線段AG、DF、FG有怎樣的數量關系?請說明理由;
(3)[思維拓展]:如圖3,在四邊形ABCD中,AD∥BC,∠A=∠GEF=90°,∠D=120°,E為AD的中點,G、F分別為AB、CD邊上的點,H是GF的中點,若AG=2,DF=6(注:23=3),EH的長為 .12發布:2025/6/4 19:30:1組卷:242引用:2難度:0.1 -
2.如圖1,在四邊形ABCD中,E,F,G,H是各邊中點,連接EF,EH,HG,GF.可得到以下結論:
結論1:四邊形EFGH是平行四邊形;
結論2:四邊形EFGH的面積是四邊形ABCD的一半;
(1)試證明結論1.
(2)探究與應用:(提示:以下問題可以直接使用上述結論)
①如圖2,在四邊形ABCD中,E,G分別為邊AB,DC的中點,連接EG.已知AD=8,BC=6,求出線段EG的取值范圍.
②如圖3,在四邊形ABCD中,點E,F,G,H分別是AB,BC,CD,AD的中點,連接EG,FH交于點O,若HF=10,EG=7,∠EOH=60°,試求出四邊形ABCD的面積.發布:2025/6/4 19:30:1組卷:95引用:1難度:0.1 -
3.如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點P從點A出發,以1cm/s的速度向點D運動;點Q從點C同時出發,以2cm/s的速度向點B運動.規定其中一個動點到達端點時,另一個動點也隨之停止運動.設點P,Q運動的時間為t s.
(1)CD邊的長度為 cm,t的取值范圍為 .
(2)從運動開始,當t取何值時,PQ∥CD?
(3)從運動開始,當t取何值時,PQ=CD?
(4)在整個運動過程中是否存在t值,使得四邊形PQCD是菱形?若存在,請求出t值;若不存在,請說明理由.發布:2025/6/4 18:30:2組卷:259引用:3難度:0.2