試卷征集
          加入會員
          操作視頻

          已知橢圓C的焦點分別為點F1(-1,0)、F2(1,0),C的離心率e=
          2
          2

          (I)求橢圓C的方程;
          (II)經(jīng)過點(0,
          2
          )且斜率為k的直線l與曲線C有兩個不同的交點P和Q,求k的取值范圍;
          (III)已知點M(
          2
          ,0),N(0,1),在(II)的條件下,是否存在常數(shù)k,使得向量
          OP
          +
          OQ
          MN

          共線?如果存在,求出k的值;如果不存在,請說明理由.

          【答案】(I)
          x
          2
          2
          +y2=1;
          (II)(-∞,-
          2
          2
          )∪(
          2
          2
          ,+∞);
          (III)不存在,理由如下:
          設(shè)P(x1,y1),Q(x2,y2),則
          OP
          =(x1+x2,y1+y2),
          由①得x1+x2=-
          4
          2
          k
          1
          +
          2
          k
          2
          .②
          又y1+y2=k(x1+x2)+2
          2

          因為M(
          2
          ,0),N(0,1),所以
          MN
          =(-
          2
          ,1).
          所以向量
          OP
          +
          OQ
          共線等價于x1+x2=-
          2
          (y1+y2).
          將②③代入上式,解得k=
          2
          2

          所以不存在常數(shù)k,使得向量
          OP
          +
          OQ
          MN
          共線.
          【解答】
          【點評】
          聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
          發(fā)布:2024/6/27 10:35:59組卷:57引用:1難度:0.6
          相似題
          • 1.設(shè)橢圓
            x
            2
            a
            2
            +
            y
            2
            b
            2
            =1(a>b>0)的右頂點為A,上頂點為B.已知橢圓的離心率為
            5
            3
            ,|AB|=
            13

            (Ⅰ)求橢圓的方程;
            (Ⅱ)設(shè)直線l:y=kx(k<0)與橢圓交于P,Q兩點,直線l與直線AB交于點M,且點P,M均在第四象限.若△BPM的面積是△BPQ面積的2倍,求k的值.

            發(fā)布:2024/12/29 12:30:1組卷:4556引用:26難度:0.3
          • 2.已知橢圓C:
            x
            2
            a
            2
            +
            y
            2
            b
            2
            =1(a>b>0)的一個頂點坐標(biāo)為A(0,-1),離心率為
            3
            2

            (Ⅰ)求橢圓C的方程;
            (Ⅱ)若直線y=k(x-1)(k≠0)與橢圓C交于不同的兩點P,Q,線段PQ的中點為M,點B(1,0),求證:點M不在以AB為直徑的圓上.

            發(fā)布:2024/12/29 12:30:1組卷:371引用:4難度:0.5
          • 3.如果橢圓
            x
            2
            36
            +
            y
            2
            9
            =
            1
            的弦被點(4,2)平分,則這條弦所在的直線方程是(  )

            發(fā)布:2024/12/18 3:30:1組卷:457引用:3難度:0.6
          APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
          本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正