設函數f(x)=|x-a|+|2x+a+1|.
(1)當a=0時,求不等式f(x)<2|x|+1的解集;
(2)若a>0,且關于x的不等式f(x)<2有解,求實數a的取值范圍.
【考點】絕對值不等式的解法.
【答案】(1)(-2,0);
(2)(0,1).
(2)(0,1).
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:67引用:6難度:0.6
相似題
-
1.已知函數f(x)=|x-1|+|2x+4|.
(1)求不等式f(x)>6的解集;
(2)記f(x)的最小值為m,已知a,b,c均為正實數,且a+b+c=m,求1a+b+4b+c的最小值.+9c+a發布:2024/12/29 3:0:1組卷:102引用:4難度:0.5 -
2.已知函數f(x)=|ax+1|+|2x-1|(a∈R).
(1)當a=1時,求不等式f(x)≥2的解集;
(2)若f(x)≤2x在x∈[,1]時恒成立,求a的取值范圍.12發布:2024/12/29 6:30:1組卷:101難度:0.1 -
3.若關于x的不等式|x-1|+|x+2|≤a在R上有解,則實數a的取值范圍是 .
發布:2024/12/29 6:0:1組卷:191難度:0.6