Given in the△ABC,a,b,c are three sides of the triangle,and 3a=2b+1c,then∠A is( )
(英漢詞典acuteangle:銳角;obtuseangle:鈍角)
3
a
=
2
b
+
1
c
【考點】三角形邊角關系.
【答案】A
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:100引用:1難度:0.9
相似題
-
1.已知△ABC中,∠B是銳角.從頂點A向BC邊或其延長線作垂線,垂足為D;從頂點C向AB邊或其延長線作垂線,垂足為E.當
和2BDBC均為正整數時,△ABC是什么三角形?并證明你的結論.2BEAB發布:2024/6/27 10:35:59組卷:209引用:3難度:0.5 -
2.如圖所示,六邊形ABCDEF中,AB=BC=CD=DE=EF=FA,并且∠A+∠C+∠E=∠B+∠D+∠F,求證:∠A=∠D,∠B=∠E,∠C=∠F.
發布:2024/6/27 10:35:59組卷:208引用:1難度:0.5 -
3.數學問題:各邊長都是整數,最大邊長為21的三角形有多少個?
為解決上面的數學問題,我們先研究下面的數學模型:
數學模型:在1到21這21個自然數中,每次取兩個不同的數,使得所取的兩個數之和大于21,有多少種不同的取法?
為了找到解決問題的方法,我們把上面數學模型簡單化.
(1)在1~4這4個自然數中,每次取兩個不同的數,使得所取的兩個數之和大于4,有多少種不同的取法?
根據題意,有下列取法:1+4,2+3,2+4,3+2,3+4,4+1,4+2,4+3;而1+4與4+1,2+3與3+2,…是同一種取法,所以上述每一種取法都重復過一次,因此共有=4=1+2+2+32種不同的取法.424
(2)在1~5這5個自然數中,每次取兩個不同的數,使得所取的兩個數之和大于5,有多少種不同的取法?
根據題意,有下列取法: 1+5,2+4,2+5,3+4,3+5,4+2,4+3,4+5; 5+1,5+2,5+3,5+4,而1+5與5+1,2+4與4+2,…是同一種取法,所以上述每一種取法都重復過一次,因此共有=6=1+2+2+3+42種不同的取法.52-14
(3)在1~6這6個自然數中,每次取兩個不同的數,使得所取的兩個數之和大于6,有多少種不同的取法?
根據題意,有下列取法:1+6,2+5,2+6,3+4,3+5,3+6,4+3,4+5,4+6,5+2,5+3,5+4,5+6,6+1,6+2,6+3,6+4,6+5;而1+6與6+1,2+5與5+2,…是同一種取法,所以上述每一種取法都重復過一次,因此共有=9=1+2+3+3+4+52種不同的取法.624
(4)在1~7這7個自然數中,每次取兩個不同的數,使得所取的兩個數之和大于7,有多少種不同的取法?
根據題意,有下列取法:1+7,2+6,2+7,3+5,3+6,3+7,4+5,4+6,4+7,5+3,5+4,5+6,5+7,6+2,6+3,6+4,6+5,6+7,7+1,7+2,7+3,7+4,7+5,7+6;而1+7與7+1,2+6與6+2,…是同一種取法,所以上述每一種取法都重復過一次,因此共有=12=1+2+3+3+4+5+62種不同的取法…72-14
問題解決:
依照上述研究問題的方法,解決上述數學模型和提出的問題
(1)在1~21這21個自然數中,每次取兩個不同的數,使得所取的兩個數之和大于21,有種不同的取法;(只填結果)
(2)在1~n(n為偶數)這n個自然數中,每次取兩個不同的數,使得所取的兩個數之和大于n,有種不同的取法;(只填最簡算式)
(3)在1~n(n為奇數)這n個自然數中,每次取兩個不同的數,使得所取的兩個數之和大于n,有種不同的取法;(只填最簡算式)
(4)各邊長都是整數,最大邊長為21的三角形有多少個?(寫出最簡算式和結果,不寫分析過程)
問題拓展:
(5)在1~100這100個自然數中,每次取兩個不同的數,使得所取的兩個數之和大于100,有種不同的取法;(只填結果)
(6)各邊長都是整數,最大邊長為11的三角形有多少個?(寫出最簡算式和結果,不寫分析過程)
(7)各邊長都是整數,最大邊長為31的三角形有多少個?(寫出最簡算式和結果,不寫分析過程)發布:2025/5/25 17:30:1組卷:423引用:2難度:0.1