試卷征集
          加入會員
          操作視頻

          如圖,在△ABC中,點O是AC邊上一個動點,過點O作直線MN∥BC,設MN交∠BCA的平分線于點E,交△BCA的外角∠ACG的平分線于點F.
          (1)探究OE與OF的數量關系并加以以證明;
          (2)連接BE,BF,當點O在邊AC上運動時,四邊形BCFE可能為菱形嗎?若可能,請證明;若不可能,請說明理由;
          (3)連接AE,AF,當點O在AC上運動到什么位置時,四邊形AECF是矩形?請說明理由;
          (4)在(3)的條件下,△ABC滿足什么條件時,四邊形AECF是正方形?請說明理由.

          【考點】四邊形綜合題
          【答案】(1)OE=OF;(2)四邊形BCFE不可能為菱形;(3)當點O運動到AC的中點時;(4)∠ACB=90°.
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/4/20 14:35:0組卷:297引用:2難度:0.4
          相似題
          • 1.如圖1,在四邊形ABCD中,E,F,G,H是各邊中點,連接EF,EH,HG,GF.可得到以下結論:
            結論1:四邊形EFGH是平行四邊形;
            結論2:四邊形EFGH的面積是四邊形ABCD的一半;
            (1)試證明結論1.
            (2)探究與應用:(提示:以下問題可以直接使用上述結論)
            ①如圖2,在四邊形ABCD中,E,G分別為邊AB,DC的中點,連接EG.已知AD=8,BC=6,求出線段EG的取值范圍.
            ②如圖3,在四邊形ABCD中,點E,F,G,H分別是AB,BC,CD,AD的中點,連接EG,FH交于點O,若HF=10,EG=7,∠EOH=60°,試求出四邊形ABCD的面積.

            發布:2025/6/4 19:30:1組卷:95難度:0.1
          • 2.(1)[方法回顧]:課本上“三角形中位線定理”的證明.已知:如圖1,在△ABC中,點D、E分別是邊AB、AC的中點.求證:DE=
            1
            2
            BC,DE∥BC,證明:如圖1,延長DE到點F,使得EF=DE,連接CF;請繼續完成證明過程;
            (2)[問題解決]:如圖2,AB∥CD,E為AD的中點,G、F分別為射線AB、DC上的點,∠GEF=90°,線段AG、DF、FG有怎樣的數量關系?請說明理由;
            (3)[思維拓展]:如圖3,在四邊形ABCD中,AD∥BC,∠A=∠GEF=90°,∠D=120°,E為AD的中點,G、F分別為AB、CD邊上的點,H是GF的中點,若AG=2
            3
            ,DF=6(注:2
            3
            =
            12
            ),EH的長為

            發布:2025/6/4 19:30:1組卷:242引用:2難度:0.1
          • 3.如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點P從點A出發,以1cm/s的速度向點D運動;點Q從點C同時出發,以2cm/s的速度向點B運動.規定其中一個動點到達端點時,另一個動點也隨之停止運動.設點P,Q運動的時間為t s.
            (1)CD邊的長度為
            cm,t的取值范圍為

            (2)從運動開始,當t取何值時,PQ∥CD?
            (3)從運動開始,當t取何值時,PQ=CD?
            (4)在整個運動過程中是否存在t值,使得四邊形PQCD是菱形?若存在,請求出t值;若不存在,請說明理由.

            發布:2025/6/4 18:30:2組卷:259引用:3難度:0.2
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正