我們學習了軸對稱、軸對稱圖形,如角、等腰三角形、正方形、圓等圖形;在代數(shù)中如a+b+c,abc,a2+b2,…,任意交換兩個字母的位置,式子的值都不變,這樣的式子我們稱為對稱式.含有兩個字母a,b的對稱式的基本對稱式是a+b和ab,像a2+b2,(a+2)(b+2)等對稱式都可以用a+b和ab表示,例如:a2+b2=(a+b)2-2ab.請根據(jù)上述材料解決下列問題:
(1)式子①a2b-2,②a2-b2,③1a+1b中,屬于對稱式的是 ③③(填序號).
(2)已知(x+a)(x+b)=x2+mx+n.
①m=a+ba+b,n=abab(用含a,b的代數(shù)式表示);
②若m=-2,n=3,求對稱式ba+ab的值;
③若n=-1,請求出對稱式a4+1a2+b4+1b2的最小值.
1
a
+
1
b
b
a
+
a
b
a
4
+
1
a
2
+
b
4
+
1
b
2
【答案】③;a+b;ab
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:68引用:1難度:0.6
相似題
-
1.對于一個三位自然數(shù)n,若將n的任意兩個數(shù)位的數(shù)對調(diào)后得到一個新三位數(shù)記為n'=100×a+10×b+c,其中a,b,c都是不小于1且不大于9的自然數(shù),在所有的n'中,我們規(guī)定當|a-b-c|最小時的三位自然數(shù)n'是“n的好數(shù)”,并記S(n)=a-bc.例如由234得到的243,324,432中,因為|2-4-3|=5,|3-2-4|=3,|4-3-2|=1,1<3<5,所以432是“234的好數(shù)”,記S(234)=4-2×3=-2,則n'=432或423.
(1)求S(156);
(2)設(shè)三位自然數(shù)n的百位和十位的數(shù)分別是x,y,個位數(shù)是6,且3x+y=17,若n'是“n的好數(shù)”,當S(n)取最大值時,求n'.發(fā)布:2025/6/8 19:30:1組卷:156引用:2難度:0.7 -
2.如果一個四位數(shù)M滿足各個數(shù)位數(shù)字都不為0,且千位數(shù)字與百位數(shù)字之和為9,將M的千位數(shù)字與百位數(shù)字組成的兩位數(shù)記為x,十位數(shù)字與個位數(shù)字組成的兩位數(shù)記為y,令F(M)=
,若F(M)為整數(shù),則稱數(shù)M是“久久為功數(shù)”.x+2y9
例如:M=2754,∵2+7=9,x=27,y=54,F(xiàn)(M)==15為整數(shù),∴M=2754是“久久為功數(shù)”;又如:M=6339,∵6+3=9,x=63,y=39,F(xiàn)(M)=27+2×549=63+2×399不為整數(shù),∴M=6339不是“久久為功數(shù)”.473
(1)判斷1827,4532是否是“久久為功數(shù)”,并說明理由;
(2)把一個“久久為功數(shù)”M的千位數(shù)字記為a,十位數(shù)字記為b,個位數(shù)字記為c,令G(M)=,當G(M)為整數(shù)時,求出所有滿足條件的M.2c-3a2b+3a發(fā)布:2025/6/8 21:0:2組卷:111引用:1難度:0.5 -
3.若把一個多位正整數(shù)的個位數(shù)字截去,再用余下的數(shù)加上截去的個位數(shù)字的4倍,如果和是13的倍數(shù),則原數(shù)能被13整除.例如,判斷19669是否能被13整除的過程如下:1966+9×4=2002,200+2×4=208,20+8×4=52,52是13的倍數(shù),所以19669能被13整除.能被13整除的數(shù)叫“十三數(shù)”.
(1)請用上述方法判斷2821和6736是否能被13整除,并說明理由;
(2)一個三位數(shù)是一個“十三數(shù)”,其中x,y,z均為非零整數(shù),x<y<z,1≤x,y,z≤9,若M的十位數(shù)字是百位數(shù)字與個位數(shù)字的平均數(shù),則稱M為“平衡數(shù)”,并記M=xyz,求F(M)的值.F(M)=|x-y|z+1發(fā)布:2025/6/8 20:30:2組卷:120引用:2難度:0.7
相關(guān)試卷