p(x)為一整系數多項式,a、b為兩相異整數,p(a)=a1,p(a1)=a2,…,p(a2005)=a2006,p(b)=b1,p(b1)=b2,…,p(b2005)=b2006,若a2006=a、b2006=b,且a1003≠a,b1003≠b,試證:當a<b時,a1003>b1003.
【考點】規律型:數字的變化類;多項式.
【答案】證明過程見解答.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/27 14:0:0組卷:11引用:1難度:0.4
相似題
-
1.觀察下列等式:
第1個等式:;1+11×3=221×3
第2個等式:;1+12×4=322×4
第3個等式:;1+13×5=423×5
第4個等式:……1+14×6=524×6
按照以上規律,解決下列問題:
(1)寫出第5個等式:;
(2)寫出第n個等式:(用含n的等式表示),并證明;
(3)計算:.(1+11×3)×(1+12×4)×(1+13×5)×(1+14×6)×…×(1+12020×2022)×(1+12021×2023)發布:2025/5/24 13:0:1組卷:545引用:5難度:0.5 -
2.猜想與證明:
觀察下列各個等式的規律:
第一個等式:;11×2=1-12
第二個等式:;12×3=12-13
第三個等式:;13×4=13-14
第四個等式:;14×5=14-15
……
請用上述等式反映出的規律猜想并證明:
(1)直接寫出第五個等式;
(2)問題解決:猜想第n個等式(n≥1,用n的代數式表示),并證明你猜想的等式是正確的;
(3)一個容器裝有11水,按照如下要求把水倒出:第1次倒出L水,第2次倒出的水量是12L水的12,第3次倒出的水量是13L水的13,第4次倒出的水量是14L水的14,……第n次倒出的水量是15L水的1n,…按照這種倒水的方法,求倒n次水倒出的總水量.1n+1發布:2025/5/24 20:30:2組卷:87引用:1難度:0.6 -
3.觀察下列關于自然數的等式:
3×1×2=1×2×3-0×1×2,①
3×2×3=2×3×4-1×2×3,②
3×3×4=3×4×5-2×3×4,③
…
根據上述規律解決下列問題:
(1)完成第四個等式:3×4×5=;
(2)寫出你猜想的第n個等式(用含n的式子表示),并驗證其正確性;
(3)根據你發現的規律,可知1×2+2×3+3×4+…+99×100=.(直接寫出結果即可)發布:2025/5/24 18:0:1組卷:283引用:5難度:0.5
相關試卷