閱讀下列材料:已知實數(shù)m,n滿足(2m2+n2+1)(2m2+n2-1)=80,試求2m2+n2的值
解:設(shè)2m2+n2=t,則原方程變?yōu)椋╰+1)(t-1)=80,整理得t2-1=80,t2=81,∴t=±9因為2m2+n2≥0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個整體,并用新字母代替(即換元),則能
使復(fù)雜的問題簡單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
已知實數(shù)x,y滿足(4x2+4y2+3)(4x2+4y2-3)=27,求x2+y2的值.
【考點】換元法解一元二次方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/21 14:0:1組卷:1369引用:5難度:0.5