設函數f(x)=2-a2x2+ax-2lnx(a∈R)
(I)當a=0時,求函數f(x)的極值;
(Ⅱ)當a>4時,求函數f(x)的單調區間;
(Ⅲ)若對任意a∈(4,6)及任意x1,x2∈[1,2],ma+2ln2>|f(x1)-f(x2)|恒成立,求實數m 的取值范圍.
2
-
a
2
【考點】利用導數求解函數的單調性和單調區間.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:142引用:3難度:0.5
相似題
-
1.已知函數
,則f(x)的單調遞減區間為( )f(x)=xlnx+3A.(e,+∞) B.(0,e) C.(0,1)和(1,e) D.(-∞,1)和(1,e) 發布:2025/1/7 12:30:6組卷:116引用:2難度:0.9 -
2.已知函數
.f(x)=lnxx-x
(1)求函數f(x)的單調區間;
(2)設0<t<1,求f(x)在區間上的最小值.[t,1t]發布:2024/12/29 12:0:2組卷:88引用:2難度:0.5 -
3.已知函數
.f(x)=12x2-a2+1ax+lnx
(1)當a=2時,求函數f(x)的單調增區間.
(2)討論函數f(x)的單調性.發布:2024/12/29 9:30:1組卷:130引用:5難度:0.5