設(shè)棱錐的頂點(diǎn)數(shù)為V,面數(shù)為F,棱數(shù)為E.
(1)觀察與發(fā)現(xiàn):三棱錐中,V3=44,F(xiàn)3=44,E3=66;
五棱錐中,V5=66,F(xiàn)5=66,E5=1010;
(2)猜想:①十棱錐中,V10=1111,F(xiàn)10=1111,E10=2020;
②n棱錐中,Vn=n+1n+1,F(xiàn)n=n+1n+1,En=2n2n;(用含有n的式子表示)
(3)探究:①棱錐的頂點(diǎn)數(shù)(V)與面數(shù)(F)之間的等量關(guān)系:V=FV=F;
②棱錐的頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間的等量關(guān)系:E=V+F-2V+F-2;
(4)拓展:棱柱的頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間是否也存在某種等量關(guān)系?若存在,試寫出相應(yīng)的等式;若不存在,請(qǐng)說明理由.

【考點(diǎn)】歐拉公式.
【答案】4;4;6;6;6;10;11;11;20;n+1;n+1;2n;V=F;V+F-2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/6 3:0:8組卷:382引用:4難度:0.5
相似題
-
1.圖1(1)、(2)、(3)依次表示四面體、八面體、正方體.
它們各自的面積數(shù)F、棱數(shù)E與頂點(diǎn)數(shù)V如下表:F E V 四面體 4 6 4 八面體 8 12 6 正方體 6 12 8 發(fā)布:2025/5/26 14:0:2組卷:107引用:1難度:0.5 -
2.十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個(gè)有趣的關(guān)系式,被稱為歐拉公式.請(qǐng)你觀察下列幾種簡單多面體模型,解答下列問題:
(1)根據(jù)上面多面體模型,完成表格中的空格:多面體 頂點(diǎn)數(shù)(V) 面數(shù)(F) 棱數(shù)(E) 四面體 長方體 正八面體 正十二面體
(2)一個(gè)多面體的面數(shù)比頂點(diǎn)數(shù)小8,且有30條棱,則這個(gè)多面體的面數(shù)是 .
(3)某個(gè)玻璃飾品的外形是簡單多面體,它的外表面是由三角形和八邊形兩種多邊形拼接而成,且有24個(gè)頂點(diǎn),每個(gè)頂點(diǎn)處都有3條棱,設(shè)該多面體外表面三角形的個(gè)數(shù)為x個(gè),八邊形的個(gè)數(shù)為y個(gè),求x+y的值.發(fā)布:2024/9/15 8:0:8組卷:528引用:4難度:0.5 -
3.正多面體共有五種,它們是 、、、、,它們的面數(shù)f,棱數(shù)e、頂點(diǎn)數(shù)v滿足關(guān)系式 .
發(fā)布:2025/5/28 2:0:5組卷:67引用:1難度:0.5