如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B.C為圓心,大于線段BC長度一半的長為半徑畫弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④EB=EC中,其中正確的結論有( )
【考點】作圖—基本作圖;線段垂直平分線的性質.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/4 8:0:8組卷:20引用:1難度:0.5
相似題
-
1.如圖,已知BD∥AE,AC平分∠BAE.
(1)使用尺規完成基本作圖:作∠ABD的角平分線,交AC于O,交AE于F,連接CF(保留作圖痕跡,不寫作法,不下結論)
(2)求證:四邊形ABCF為菱形.(請補全下面的證明過程)
證明:∵AC平分∠BAE,
∴.
又∵BD∥AE,
∴,
∴∠BAC=∠BCA,
∴AB=CB.
同理可得:.
∴BC=AF.
又∵,
∴四邊形ABCF為平行四邊形,
∵BA=BC,
∴四邊形ABCF為菱形.發布:2025/6/13 3:30:1組卷:55引用:4難度:0.6 -
2.如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,適當長為半徑畫弧,交AB于點M,交AC于點N.再分別以M,N為圓心,大于
MN的長為半徑畫弧,兩弧在∠BAC內部交于點P.連接AP并延長,交BC于點D.有下列說法:①線段AD是∠BAC的平分線;②∠ADC=60°③點D到AB邊的距離與DC的長相等;④S△DAC:S△ABC=1:3.其中正確結論的個數是( )12A.1 B.2 C.3 D.4 發布:2025/6/13 6:30:2組卷:220引用:6難度:0.5 -
3.如圖,在四邊形ABCD中,AB=AD,AD∥BC.
(1)用尺規作∠BAD的角平分線AF,分別交BD、BC于點E、F;(保留作圖痕跡,不寫作法)
(2)證明:AD=BF,根據已有證明過程完成填空.
證明:∵AF平分∠BAD
∴
∵AD∥BC
∴
∴
∴AB=BF
∵
∴AD=BF發布:2025/6/13 7:0:2組卷:171引用:3難度:0.7