如圖,正方形ABCD的對角線相交于點O,點M,N分別是邊BC,CD上的動點(不與點B,C,D重合),AM,AN分別交BD于點E,F(xiàn),且∠MAN始終保持45°不變.
(1)求證:AFAM=22;
(2)求證:AF⊥FM;
(3)請?zhí)剿鳎涸凇螹AN的旋轉(zhuǎn)過程中,當(dāng)∠BAM等于多少度時,∠FMN=∠BAM?寫出你的探索結(jié)論,并加以證明.
AF
AM
2
2
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/1 8:0:9組卷:1482引用:2難度:0.1
相似題
-
1.已知,在?ABCD中,E為AB上一點,且DE=2AD,作∠ADE的平分線交AB于點F.
(1)如圖1,當(dāng)E與B重合時,連接FC交BD于點G,若FC⊥CD,AF=3,求線段CF的長.
(2)如圖2,當(dāng)CE⊥AB時,過點F作FH⊥BC于點H,交EC于點M.若G為FD中點,CE=2AF,求證:CD-3AG=EM.
(3)如圖3,在(1)的條件下,M為線段FC上一點,且CM=,P為線段CD上的一個動點,將線段MP繞著點M逆時針旋轉(zhuǎn)30°得到線段MP′,連接FP′,直接寫出FP′的最小值.3發(fā)布:2025/5/26 4:0:1組卷:481引用:2難度:0.1 -
2.如圖,△AMN是邊長為2的等邊三角形,以AN,AM所在直線為邊的平行四邊形ABCD交MN于點E、F,且∠EAF=30°.
(1)當(dāng)F、M重合時,求AD的長;
(2)當(dāng)NE、FM滿足什么條件時,能使;32(NE+FM)=EF
(3)在(2)的條件下,求證:四邊形ABCD是菱形.發(fā)布:2025/5/26 2:30:2組卷:150引用:2難度:0.1 -
3.問題情境:
在數(shù)學(xué)課上,老師給出了這樣一道題:如圖1,在△ABC中,AB=AC=6,∠BAC=30°,求BC的長.
探究發(fā)現(xiàn):
(1)如圖2,勤奮小組經(jīng)過思考后發(fā)現(xiàn):把△ABC繞點A順時針旋轉(zhuǎn)90°得到△ADE,連接BD,BE,利用直角三角形的性質(zhì)可求BC的長,其解法如下:
過點B作BH⊥DE交DE的延長線于點H,則BC=DE=DH-HE.
△ABC繞點A順時針旋轉(zhuǎn)90°得到△ADE,AB=AC=6,∠BAC=30°∴……
請你根據(jù)勤奮小組的思路,完成求解過程.
拓展延伸:
(2)如圖3,縝密小組的同學(xué)在勤奮小組的啟發(fā)下,把△ABC繞點A順時針旋轉(zhuǎn)120°后得到△ADE,連接BD,CE交于點F,交AB于點G,請你判斷四邊形ADFC的形狀并證明;
(3)奇異小組的同學(xué)把圖3中的△BGF繞點B順時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,連接AF,發(fā)現(xiàn)AF的長度不斷變化,直接寫出AF的最大值和最小值.發(fā)布:2025/5/26 3:0:2組卷:83引用:1難度:0.3