在平面直角坐標系中,拋物線y=x2+bx+c(b、c為常數),經過點(3,0)和(0,-3).
(1)求該拋物線函數表達式;
(2)當-1≤x≤4時,求二次函數y=x2+bx+c的最大值和最小值;
(3)點P為此函數圖象上任意一點,橫坐標為m,過點P作PQ⊥y軸,交直線x=3于點Q.當點P和點Q不重合時,以PQ為邊,點P為直角頂點向y軸負方向作等腰直角三角形PQM.
①當點M到拋物線頂點縱坐標所在直線的距離是5時,求m的值;
②當拋物線在等腰直角三角形PQM內部(包括邊界)的點的縱坐標之差最大值是1時,直接寫出m的值.
【考點】二次函數綜合題.
【答案】(1)y=x2-2x-3;
(2)函數的最大值是5,最小值是-4;
(3)①為或;
②0,.
(2)函數的最大值是5,最小值是-4;
(3)①為
1
-
29
2
3
+
13
2
②0,
1
+
10
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:261引用:1難度:0.4
相似題
-
1.拋物線y=x2-2x-3交x軸于A,B兩點(A在B的左邊),C是第一象限拋物線上一點,直線AC交y軸于點P.
(1)直接寫出A,B兩點的坐標;
(2)如圖(1),當OP=OA時,在拋物線上存在點D(異于點B),使B,D兩點到AC的距離相等,求出所有滿足條件的點D的橫坐標;
(3)如圖(2),直線BP交拋物線于另一點E,連接CE交y軸于點F,點C的橫坐標為m.求的值(用含m的式子表示).FPOP發布:2025/5/21 12:0:1組卷:351引用:1難度:0.3 -
2.定義:若拋物線y=ax2+bx+c(ac≠0)與x軸交于A,B兩點,與y軸交于點C.線段OA,OB,OC的長滿足OC2=OA?OB,則這樣的拋物線稱為“黃金拋物線”.如圖,“黃金拋物線”y=ax2+bx+2(a≠0)與x軸的負半軸交于點A,與x軸的正半軸交于點B,與y軸交于點C,且OA=4OB.
(1)求拋物線的解析式;
(2)點P為AC上方拋物線上的動點,過點P作PD⊥AC于點D.
①求PD的最大值;
②連接PC,當以點P,C,D為頂點的三角形與△A CO相似時,求點P的坐標.發布:2025/5/21 12:0:1組卷:297引用:1難度:0.3 -
3.已知,拋物線L:y=x2-4mx(m≠0),直線x=m將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關于直線x=m的對稱圖形,得到的整個圖形L′稱為拋物線L關于直線x=m的“L雙拋圖形”;
感知特例
如圖所示,當m=1時,拋物線L:y=x2-4mx上的點B,C,A,D,E分別關于直線x=m對稱的點為B′,C′,A′,D′,E′如下表:… B(1,-3) C(2,-4) A(3,-3) D(4,0) E(5,5) … … B′(1,-3) C′( ,) A′( ,) D′(-2,0) E′(-3,5) …
②在圖中描出表中對稱點,再用平滑的曲線依次連接各點,得到圖象記為L′;
③若雙拋圖形L′與直線y=t恰好有三個交點,則t的值為 ;
④若雙拋圖形L′的函數值隨著x的增大而增大,則x的取值范圍為 ;
探究問題
(2)①若雙拋圖形L′與直線y=t恰好有三個交點,則t的值為 ;(用含m的式子表達)
②若雙拋圖形L′的函數值隨著x的增大而增大,直接寫出x的取值范圍;(用含m的式子表達)
③拋物線L的頂點為點C,點C關于直線x=m對稱點為C′,直線x=m與雙拋圖形L′交點為點B,若△BCC′為等邊三角形時,求m的值.發布:2025/5/21 12:0:1組卷:349引用:1難度:0.3