閱讀以下材料:
斐波那契數(shù)列1,1,2,3,5,8,13,21,34,55,…
盧卡斯數(shù)列1,3,4,7,11,18,29,47,76,123,…
以上數(shù)列都有共同的特點:每一項都是整數(shù),從第3項開始,每一項都等于前兩項之和.類似的數(shù)列還有無限多個,我們稱之為斐波那契一盧卡斯數(shù)列.例如:0,2,2,4,6,10,16,26,…是斐波那契一盧卡斯數(shù)列.完成以下問題:
(1)若5,a,b,33,…是斐波那契一盧卡斯數(shù)列,求2a-b的值;
(2)若1,a2,a3,a4,a5,…是斐波那契一盧卡斯數(shù)列,其中a2與a3的和大于7,且a2+a3+a4+a5<39,求a2的值.
【考點】規(guī)律型:數(shù)字的變化類.
【答案】(1)9;
(2)4.
(2)4.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/5 8:0:8組卷:76引用:1難度:0.5
相似題
-
1.觀察以下等式:
第1個等式:+11=2×12×1-1;11
第2個等式:+12=2×12×4-2;13
第3個等式:+13=2×12×9-3;15
第4個等式:+14=2×12×16-4;17
第5個等式:+15=2×12×25-5;19
……
按照以上規(guī)律,解決下列問題:
(1)寫出第7個等式:;
(2)寫出你猜想的第n個等式:(用含n的等式表示),并證明.發(fā)布:2025/6/9 7:30:1組卷:24引用:1難度:0.6 -
2.先閱讀理解,再回答下列問題:
因為=12+1,且1<2<2,所以2的整數(shù)部分為1;12+1
因為=22+2,且2<6<3,所以6的整數(shù)部分為2;22+2
因為=32+3,且3<12<4,所以12的整數(shù)部分為3;32+3
(1)以此類推,我們會發(fā)現(xiàn)(n為正整數(shù))的整數(shù)部分為 ;請說明理由;n2+n
(2)已知的整數(shù)部分為a,20的整數(shù)部分為b,求a+b的值.132發(fā)布:2025/6/9 11:0:1組卷:29引用:1難度:0.6 -
3.觀察下列算式:152=225,252=625,352=1225,452=2025….
(1)可猜想;752=;
(2)若用正整數(shù)n表示(1)中等號左邊的兩位數(shù)中的十位數(shù)字,則可用含n的等式表示(1)的運算規(guī)律:;
(3)請用所學(xué)知識說明(2)所寫等式的正確性.發(fā)布:2025/6/9 13:0:1組卷:39引用:2難度:0.7