“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若(a+b)2=21,大正方形的面積為13,則小正方形的面積為( )
【考點(diǎn)】勾股定理的證明.
【答案】B
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/26 8:0:9組卷:614引用:6難度:0.5
相似題
-
1.大家在學(xué)完勾股定理的證明后發(fā)現(xiàn)運(yùn)用“同一圖形的面積不同表示方式相同”可以證明一類含有線段的等式,這種解決問題的方法我們稱之為面積法.學(xué)有所用:在等腰三角形ABC中,AB=AC,其一腰上的高為h,M是底邊BC上的任意一點(diǎn),M到腰AB、AC的距離分別為h1、h2.
(1)請你結(jié)合圖形來證明:h1+h2=h;
(2)當(dāng)點(diǎn)M在BC延長線上時(shí),h1、h2、h之間又有什么樣的結(jié)論.請你畫出圖形,并直接寫出結(jié)論不必證明;
(3)利用以上結(jié)論解答,如圖在平面直角坐標(biāo)系中有兩條直線l1:y=x+3,l2:y=-3x+3,若l2上的一點(diǎn)M到l1的距離是34.求點(diǎn)M的坐標(biāo).32發(fā)布:2025/6/6 19:30:1組卷:10473引用:26難度:0.1 -
2.(1)為了證明勾股定理,李明將兩個(gè)全等的直角三角形按如圖1所示擺放,使點(diǎn)A、E、D在同一條直線上,如圖1,請利用此圖證明勾股定理;
(2)如圖2,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒4cm的速度沿折線A-C-B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0),若點(diǎn)P在∠BAC的平分線上,求此時(shí)t的值.發(fā)布:2025/6/5 23:0:2組卷:477引用:7難度:0.7 -
3.如圖,由四個(gè)全等的直角三角形拼成的圖形,設(shè)CE=a,HG=b,則斜邊BD的長是( )
A.a(chǎn)+b B.a(chǎn)-b C. a2+b22D. a2-b22發(fā)布:2025/6/5 21:30:1組卷:2346引用:8難度:0.7
相關(guān)試卷