(1)方法呈現(xiàn):如圖①:在△ABC中,若AB=6,AC=4,點(diǎn)D為BC邊的中點(diǎn),求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:
延長AD到點(diǎn)E,使DE=AD,再連接BE,可證△ACD≌△EBD,從而把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是 1<AD<51<AD<5(直接寫出范圍即可).這種解決問題的方法我們稱為“倍長中線法”;
(2)探究應(yīng)用:
如圖②,在△ABC中,點(diǎn)D是BC的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,判斷BE+CF與EF的大小關(guān)系,并說明理由;
(3)問題拓展:
如圖③,在四邊形ABCD中,AB∥CD,AF與DC的延長線交于點(diǎn)F,點(diǎn)E是BC的中點(diǎn),若AE是∠BAF的角平分線,試探究線段AB、AF、CF之間的數(shù)量關(guān)系,并說明理由.

【考點(diǎn)】三角形綜合題.
【答案】1<AD<5
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2033引用:3難度:0.1
相似題
-
1.綜合與實(shí)踐:
問題情境:數(shù)學(xué)活動(dòng)課上,王老師出示了一個(gè)問題:
如圖1,直線m∥n,點(diǎn)A、B在直線m上(點(diǎn)B在點(diǎn)A的下方),過點(diǎn)A作AC⊥n于點(diǎn)C,連接BC,以C為圓心CA為半徑作弧,交直線n于點(diǎn)D,交BC于點(diǎn)E.求證:∠ABC=2∠CDE.
獨(dú)立思考:(1)請(qǐng)解答王老師提出的問題.
實(shí)踐探究:(2)DE與AC交于點(diǎn)P,在原有問題條件不變的情況下,王老師提出新問題,請(qǐng)你解答.
“猜想出AB、BC、PC的數(shù)量關(guān)系,并證明.”
問題解決:(3)過點(diǎn)D作DQ∥BC交m于點(diǎn)Q(點(diǎn)Q在點(diǎn)A上方),數(shù)學(xué)活動(dòng)小組同學(xué)對(duì)上述問題進(jìn)行特殊化研究之后發(fā)現(xiàn),當(dāng)AQ=BE時(shí),線段BE和AB有一定的數(shù)量關(guān)系,該小組提出下面的問題,請(qǐng)你解答.
“如圖2,當(dāng)AQ=BE時(shí),求的值.”DPAB發(fā)布:2025/6/14 20:0:1組卷:171引用:2難度:0.1 -
2.如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CPQ是否全等,請(qǐng)說明理由.
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為 cm/s時(shí),在某一時(shí)刻也能夠使△BPD與△CPQ全等.
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都按逆時(shí)針方向沿△ABC的三邊運(yùn)動(dòng).求經(jīng)過多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫出第一次相遇點(diǎn)在△ABC的哪條邊上?發(fā)布:2025/6/14 20:0:1組卷:112引用:2難度:0.3 -
3.如圖1,在△ABC中,∠A=40°,外角平分線BN和CN相交于點(diǎn)N,求∠BNC的度數(shù).
?
(1)請(qǐng)你先完成這個(gè)問題的解答.小明在完成以上問題的解答后,作如下變式探究:
(2)如圖2,在△ABC中,∠A=80°,若∠CBN=∠CBE,∠BCM=38∠BCD,BN與CM交于點(diǎn)O,求∠BOC的度數(shù).38
(3)如圖3,在△ABC中,∠A=n°,若∠CBN=∠CBE,∠BCM=34∠BCD,當(dāng)射線CM與BN相交時(shí),n的取值范圍是什么?試說明理由.34發(fā)布:2025/6/14 20:0:1組卷:257引用:2難度:0.4