綜合與實踐:
問題情境:數(shù)學(xué)活動課上,王老師出示了一個問題:
如圖1,直線m∥n,點A、B在直線m上(點B在點A的下方),過點A作AC⊥n于點C,連接BC,以C為圓心CA為半徑作弧,交直線n于點D,交BC于點E.求證:∠ABC=2∠CDE.
獨立思考:(1)請解答王老師提出的問題.
實踐探究:(2)DE與AC交于點P,在原有問題條件不變的情況下,王老師提出新問題,請你解答.
“猜想出AB、BC、PC的數(shù)量關(guān)系,并證明.”
問題解決:(3)過點D作DQ∥BC交m于點Q(點Q在點A上方),數(shù)學(xué)活動小組同學(xué)對上述問題進行特殊化研究之后發(fā)現(xiàn),當(dāng)AQ=BE時,線段BE和AB有一定的數(shù)量關(guān)系,該小組提出下面的問題,請你解答.
“如圖2,當(dāng)AQ=BE時,求DPAB的值.”
DP
AB
【考點】三角形綜合題.
【答案】(1)證明見解答;
(2)AB+PC=BC,理由見解答;
(3).
(2)AB+PC=BC,理由見解答;
(3)
2
5
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:168引用:2難度:0.1
相似題
-
1.材料一:如圖①,點C把線段AB分成兩部分(AC>BC),若
=ACAB,那么稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點.類似地,對于實數(shù):a1<a2<a3,如果滿足(a2-a1)2=(a3-a2)(a3-a1),則稱a2為a1,a3的黃金數(shù).BCAC
材料二:如果一條直線l把一個面積為S的圖形分成面積為S1和S2兩部分(S1>S2),且滿足,那么稱直線l為該圖形的黃金分割線.如圖②,在△ABC中,若線段CD所在的直線是△ABC的黃金分割線,過點C作一條直線交BD邊于點E,過點D作DF∥EC交△ABC的一邊于點F,連接EF,交CD于G.S1S=S2S1
問題:
(1)若實數(shù)0<a<1,a為0,1的黃金數(shù),求a的值.
(2)S△CFGS△EDG.(填”>””<””=”)
(3)EF是△ABC的黃金分割線嗎?為什么?發(fā)布:2025/5/26 11:0:2組卷:38引用:3難度:0.2 -
2.如圖所示,在平面直角坐標系內(nèi),A(0,
),B(-1,0),C(1,0),D點在y軸的負半軸上,且∠OCD=30°,現(xiàn)將∠ADC繞D點逆時針旋轉(zhuǎn),角的一邊與線段CA或其延長線相交于E,另一邊與線段AB或其延長線相交于F.3
(1)當(dāng)E、F兩點分別在線段CA、CB延長線上時,連接EF,如圖所示,試探究線段BF、EF、CE有何數(shù)量關(guān)系,并說明理由.
(2)在旋轉(zhuǎn)的過程中是否存在S△DBF:S△ADF=1:4?若存在,請求出F點的坐標;若不存在,請說明理由.發(fā)布:2025/5/26 14:30:2組卷:48引用:1難度:0.1 -
3.如圖,在△ABC中,∠C=90°,AC=3,BC=4,CD⊥AB于D,點E在斜邊AB上,過點E作直線與△ABC的直角邊相交于點F,設(shè)AE=x,△AEF的面積為y.
(1)求線段AD的長;
(2)若EF⊥AB,當(dāng)點E在線段AB上移動點(E不與AB重合時),
①求y與x的函數(shù)關(guān)系式(寫出自變量x的取值范圍)
②當(dāng)x取何值時,y有最大值?并求出這個最大值.發(fā)布:2025/5/26 15:0:1組卷:31引用:1難度:0.2