已知:在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中點,以CD為直徑的⊙Q分別交BC、BA于點F、E,點E位于點D下方,連接EF交CD于點G.
(1)如圖1,如果BC=2,求DE的長;
(2)如圖2,設BC=x,GDGQ=y,求y關于x的函數關系式及其定義域;
(3)如圖3,連接CE,如果CG=CE,求BC的長.

GD
GQ
【考點】圓的綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:966引用:2難度:0.1
相似題
-
1.如圖1,C、D是以AB為直徑的⊙O上的點,且滿足BC=CD=DA=3,點P在
上,PD交AC于點M,交AB于點G,PC交BD于點N,交AB于點H.?AB
(1)求∠DBA的度數.
(2)如圖2,當點P是的中點時,?AB
①求證:△AMG是等腰三角形.
②求的值.MIAG
(3)如圖1,設,△DMI與△CNI的面積差為y,求y關于x的函數表達式.AMMC=x發布:2025/5/31 16:30:2組卷:434引用:1難度:0.2 -
2.閱讀材料:如圖,△ABC的周長為l,面積為S,內切圓⊙O的半徑為r,探究r與S,l之間的關系.
解:連接OA、OB、OC.
∵S△AOB=AB?r,S△OBC=12BC?r,S△OCA=12CA?r,12
∴S=AB?r+12BC?r+12CA?r=12l?r,12
∴r=2Sl
解決問題:
(1)利用探究的結論,計算邊長分別為5,12,13的三角形內切圓半徑.
(2)如圖,若四邊形ABCD存在內切圓(與各邊都相切的圓),且面積為S,各邊長分別為a,b,c,d,試推導四邊形的內切圓半徑公式.
(3)若一個n邊形(n為不小于3的整數)存在內切圓,且面積為S,各邊長分別為a1,a2,a3,a4,…,an,合理猜想其內切圓半徑公式(不需說明理由).發布:2025/5/31 13:0:2組卷:90引用:2難度:0.5 -
3.如圖,平面直角坐標系中,矩形ABCD,其中A(1,0)、B(4,0)、C(4,2)、D(1,2),定義如下:若點P關于直線l的對稱點P'在矩形ABCD的邊上,則稱點P為矩形ABCD關于直線l的“關聯點”,
(1)已知點P1(-1,2)、點P2(-2,1)、點P3(-4,1),點P2(-3,-1)中是矩形ABCD關于y軸的關聯點的是 ;
(2)⊙O的圓心O(-,1)半徑為72,若⊙O上至少存在一個點是矩形ABCD關于直線x=t的關聯點,求t的取值范圍;32
(3)⊙O的圓心O(m,1)(m<0)半徑為r,若存在t值使⊙O上恰好存在四個點是矩形ABCD關于直線x=t的關聯點,寫出r的取值范圍,并寫出當r取最小值時t的取值范圍(用含m的式子表示).發布:2025/5/31 11:0:1組卷:360引用:1難度:0.2