已知數列{an}的各項都是正數,且滿足:a0=1,an+1=12an?(4-an),n∈N.
(1)求a1,a2;
(2)證明an<an+1<2,n∈N.
a
0
=
1
,
a
n
+
1
=
1
2
a
n
?
(
4
-
a
n
)
,
n
∈
N
【考點】用數學歸納法證明不等式.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:542難度:0.3
相似題
-
1.用數學歸納法證明不等式
成立,起始值至少應取為( ?。?/h2>1+12+14+…+12n-1>12764A.7 B.8 C.9 D.10 發布:2024/5/27 14:0:0組卷:921引用:15難度:0.7 -
2.設f(n)=nn+1,g(n)=(n+1)n,n∈N*.
(1)當n=1,2,3,4時,比較f(n)與g(n)的大小.
(2)根據(1)的結果猜測一個一般性結論,并加以證明.發布:2024/6/27 10:35:59組卷:156引用:2難度:0.5 -
3.已知
,f(n)=1+12+13+…+1n(n∈N*).g(n)=2(n+1-1)(n∈N*)
(1)當n=1,2,3時,分別比較f(n)與g(n)的大?。ㄖ苯咏o出結論);
(2)由(1)猜想f(n)與g(n)的大小關系,并證明你的結論.發布:2024/6/27 10:35:59組卷:1049難度:0.5