已知橢圓x2a2+y2b2=1(a>b>0)的右焦點(diǎn)為F(3,0),且點(diǎn)M(-3,12)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線l過點(diǎn)F,且與橢圓交于A,B兩點(diǎn),過原點(diǎn)O作l的垂線,垂足為P.若λ=|OP|2-4|AB|,求λ的值.
x
2
a
2
+
y
2
b
2
3
-
3
1
2
4
|
AB
|
【考點(diǎn)】橢圓的弦及弦長.
【答案】(Ⅰ).
(Ⅱ)-1.
x
2
4
+
y
2
=
1
(Ⅱ)-1.
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:222引用:2難度:0.6
相似題
-
1.已知橢圓C的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),過F2的直線與C交于A,B兩點(diǎn).若|AF2|=2|F2B|,|AB|=|BF1|,則C的方程為( )
A. x22+y2=1B. x23+y22=1C. x24+y23=1D. x25+y24=1發(fā)布:2024/12/17 23:0:2組卷:502引用:17難度:0.6 -
2.已知橢圓C的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),過F2的直線與C交于A,B兩點(diǎn).若|AF2|=2|F2B|,|AB|=|BF1|,則C的方程為( )
A. =1x22+y2B. x23+y22=1C. x24+y23=1D. x25+y24=1發(fā)布:2024/12/15 23:30:1組卷:1169引用:10難度:0.6 -
3.橢圓E:
的左、右焦點(diǎn)分別為F1,F(xiàn)2,直線l過F2與E交于A,B兩點(diǎn),△ABF1為直角三角形,且|AF1|,|AB|,|BF1|成等差數(shù)列,則E的離心率為( )x2a2+y2b2=1(a>b>0)A. 12B. 22C. 32D. 34發(fā)布:2024/11/9 20:0:2組卷:153引用:3難度:0.5