八年級一班數(shù)學興趣小組在一次活動中進行了探究試驗活動,請你和他們一起活動吧.

(1)【閱讀理解】如圖1,在△ABC中,若AB=10,BC=8.求AC邊上的中線BD的取值范圍.小聰同學是這樣思考的;延長BD至E,使DE=BD,連接CE.利用全等將邊AB轉(zhuǎn)化到CE,在△BCE中利用三角形三邊關(guān)系即可求出中線BD的取值范圍.在這個過程中小聰同學證三角形全等用到的判定方法是:SASSAS;中線BD的取值范圍是 1<BD<91<BD<9.
(2)【理解與應用】如圖2,在△ABC中,∠B=90°,點D是AC的中點,點M在AB邊上,點N在BC邊上,若DM⊥DN.試猜想線段AM、CN、MN三者之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)【問題解決】如圖3,在△ABC中,點D是AC的中點,AB=MB,BC=BN,其中∠ABM=∠NBC=90°,連接MN,探索BD與MN的關(guān)系,并說明理由.
【考點】三角形綜合題.
【答案】SAS;1<BD<9
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/3 8:0:9組卷:567引用:7難度:0.1
相似題
-
1.已知AB=BC,∠ABC=90°,直線l是過點B的一條動直線(不與直線AB,BC重合),分別過點A,C作直線l的垂線,垂足為D,E.
(1)如圖1,當45°<∠ABD<90°時,
①求證:CE+DE=AD;
②連接AE,過點D作DH⊥AE于H,過點A作AF∥BC交DH的延長線于點F.依題意補全圖形,用等式表示線段DF,BE,DE的數(shù)量關(guān)系,并證明;
(2)在直線l運動的過程中,若DE的最大值為3,直接寫出AB的長.發(fā)布:2025/5/23 20:30:1組卷:1374引用:5難度:0.4 -
2.課本再現(xiàn)
如圖1,在等邊△ABC中,E為邊AC上一點,D為BC上一點,且AE=CD,連接AD與BE相交于點F.
(1)AD與BE的數(shù)量關(guān)系是 ,AD與BE構(gòu)成的銳角夾角∠BFD的度數(shù)是 ;
深入探究
(2)將圖1中的AD延長至點G,使FG=BF,連接BG,CG,如圖2所示.求證:GA平分∠BGC.(第一問的結(jié)論,本問可直接使用)
遷移應用
(3)如圖3,在等腰△ABC中,AB=AC,D,E分別是邊BC,AC上的點,AD與BE相交于點F.若∠BAC=∠BFD,且BF=3AF,求值.BDCD發(fā)布:2025/5/23 20:30:1組卷:1077引用:3難度:0.1 -
3.如圖,在△ABC中,AB=AC=3,∠BAC=90°,點D為一個動點,且點D到點C的距離為1,連接CD,AD,作EA⊥AD,使AE=AD.
(1)求證:△ADB≌△AEC;
(2)求證:BD⊥EC;
(3)直接寫出BD最大和最小值;
(4)點D在直線AC上時,求BD的長.發(fā)布:2025/5/23 21:0:1組卷:103引用:2難度:0.4
相關(guān)試卷