課本再現
如圖1,在等邊△ABC中,E為邊AC上一點,D為BC上一點,且AE=CD,連接AD與BE相交于點F.
(1)AD與BE的數量關系是 AD=BEAD=BE,AD與BE構成的銳角夾角∠BFD的度數是 60°60°;
深入探究
(2)將圖1中的AD延長至點G,使FG=BF,連接BG,CG,如圖2所示.求證:GA平分∠BGC.(第一問的結論,本問可直接使用)
遷移應用
(3)如圖3,在等腰△ABC中,AB=AC,D,E分別是邊BC,AC上的點,AD與BE相交于點F.若∠BAC=∠BFD,且BF=3AF,求BDCD值.

BD
CD
【考點】三角形綜合題.
【答案】AD=BE;60°
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/23 20:30:1組卷:1104引用:3難度:0.1
相似題
-
1.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動點P從點A出發沿線段AB以每秒3個單位長的速度運動至點B,過點P作PQ⊥AB交射線AC于點Q,設點P的運動時間為t秒(t>0).
(1)線段AQ的長為 ,線段PQ的長為 .(用含t的代數式表示)
(2)當△APQ與△ABC的周長的比為1:4時,求t的值.
(3)設△APQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數關系式.發布:2025/6/25 4:0:1組卷:19引用:1難度:0.3 -
2.已知等腰直角△ABC的直角邊AB=BC=10cm,點P,Q分別從A.C兩點同時出發,均以1cm/s的相同速度做直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設P點運動時間為t,△PCQ的面積為S.
(1)求出S關于t的函數關系式.
(2)當點P在線段AB上時,點P運動幾秒時,S△PCQ=S△ABC?14
(3)作PE⊥AC于點E,當點P.Q運動時,線段DE的長度是否改變?證明你的結論.發布:2025/6/23 23:0:10組卷:243引用:1難度:0.1 -
3.如圖,在△ABC中,BC=5,AD⊥BC,BE⊥AC,AD,BE相交于點O,BD:CD=2:3,且AE=BE.
(1)求線段AO的長;
(2)動點P從點O出發,沿線段OA以每秒1個單位長度的速度向終點A運動,動點Q從點B出發沿射線BC以每秒4個單位長度的速度運動.P,Q兩點同時出發,當點P到達A點時,P,Q兩點同時停止運動.設點P的運動時間為t秒,△AOQ的面積為S,請用含t的式子表示S,并直接寫出相應的t的取值范圍;
(3)在(2)的條件下,點F是直線AC上的一點,且CF=BO,是否存在t值,使以點B,O,P為頂點的三角形與以點F,C,Q為頂點的三角形全等?若存在,請直接寫出符合條件的t值;若不存在,請說明理由.發布:2025/6/25 5:0:1組卷:191引用:3難度:0.4