【問題再現(xiàn)】:
(1)如圖1,平行四邊形ABCD的對角線交于點O,點E,F(xiàn)在對角線BD上,連接AE,CF.若再增加一個條件,便可證明出AE=CF.
針對上述問題,小明添加的條件是“DE=BF”;小強添加的條件是“AE∥CF”.請你替小明或小強完成證明過程;(即任選其中一種方法證明)
【問題探究】:
(2)如圖2,平行四邊形ABCD的對角線交于點O,過點B的直線與對角線AC交于點P,分別過點A,C作直線BP的垂線,垂足分別為點E,F(xiàn),連接OE,OF.
①求證:OE=OF;
②若∠OEF=30°,探究AE,CF,OE間的等量關(guān)系,并證明;
【問題拓廣】:
(3)如圖3,平行四邊形ABCD的對角線交于點O,過點B的直線與對角線CA的延長線交于點P,分別過點A,C作直線BP的垂線,垂足分別為點E,F(xiàn),連接OE,OF.若∠OEF的度數(shù)記為α,請寫出AE,CF,OE間的等量關(guān)系,并證明.

【考點】四邊形綜合題.
【答案】(1)證明見解析過程;
(2)①證明見解析過程;
②CF=OE+AE,證明見解析過程;
(3)CF=2OE?sinα-AE,證明見解析過程.
(2)①證明見解析過程;
②CF=OE+AE,證明見解析過程;
(3)CF=2OE?sinα-AE,證明見解析過程.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/21 22:0:1組卷:168引用:3難度:0.1
相似題
-
1.在Rt△ABC中,∠C=90°,AC=8,BC=6,點D是AC邊上的動點.
(1)如圖1,過點D作DG∥AB交BC于點G,以點D為圓心,DG長為半徑畫弧,交AB于點E,在EB上截取EF=ED,連接FG.證明:四邊形DEFG是菱形;
(2)在(1)條件下,求出能作出菱形時所對應(yīng)CD長度的取值范圍;
(3)如圖2,連接BD,作DQ⊥BD交AB于點Q,求AQ的最大值.發(fā)布:2025/5/22 5:0:1組卷:143引用:2難度:0.3 -
2.已知,如圖,矩形ABCD中,AD=6,DC=7,菱形EFGH的三個頂點E,G,H分別在矩形ABCD的邊AB,CD,DA上,AH=2,連接CF.
(1)如圖1,若DG=2,求證四邊形EFGH為正方形;
(2)如圖2,若DG=4,求△FCG的面積;
(3)當(dāng)DG為何值時,△FCG的面積最小.發(fā)布:2025/5/22 6:0:1組卷:348引用:2難度:0.2 -
3.綜合與實踐
數(shù)學(xué)活動課上,老師讓同學(xué)們根據(jù)下面情境提出問題并解答.
問題情境:在?ABCD中,點P是邊AD上一點.將△PDC沿直線PC折疊,點D的對應(yīng)點為E.
“興趣小組”提出的問題是:如圖1,若點P與點A重合,過點E作EF∥AD,與PC交于點F,連接DF,則四邊形AEFD是菱形.
數(shù)學(xué)思考:
(1)請你證明“興趣小組”提出的問題;
拓展探究:
(2)“智慧小組”提出的問題是:如圖2,當(dāng)點P為AD的中點時,延長CE交AB于點F,連接PF.試判斷PF與PC的位置關(guān)系,并說明理由.
請你幫助他們解決此問題.
問題解決:
“創(chuàng)新小組”在前兩個小組的啟發(fā)下,提出的問題是:如圖3,當(dāng)點E恰好落在AB邊上時,AP=3,PD=4,DC=10.則AE的長為 .(直接寫出結(jié)果)發(fā)布:2025/5/22 6:0:1組卷:509引用:5難度:0.1
相關(guān)試卷