綜合與實踐
數(shù)學(xué)活動課上,老師讓同學(xué)們根據(jù)下面情境提出問題并解答.
問題情境:在?ABCD中,點P是邊AD上一點.將△PDC沿直線PC折疊,點D的對應(yīng)點為E.
“興趣小組”提出的問題是:如圖1,若點P與點A重合,過點E作EF∥AD,與PC交于點F,連接DF,則四邊形AEFD是菱形.
數(shù)學(xué)思考:
(1)請你證明“興趣小組”提出的問題;
拓展探究:
(2)“智慧小組”提出的問題是:如圖2,當(dāng)點P為AD的中點時,延長CE交AB于點F,連接PF.試判斷PF與PC的位置關(guān)系,并說明理由.
請你幫助他們解決此問題.
問題解決:
“創(chuàng)新小組”在前兩個小組的啟發(fā)下,提出的問題是:如圖3,當(dāng)點E恰好落在AB邊上時,AP=3,PD=4,DC=10.則AE的長為 2.52.5.(直接寫出結(jié)果)

【考點】四邊形綜合題.
【答案】2.5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/22 6:0:1組卷:509引用:5難度:0.1
相似題
-
1.如圖,正方形ABCD中,點E,F(xiàn)分別在BC,CD上,BE=CF,AE,BF交于點G.
(1)求∠AGF的度數(shù);
(2)在線段AG上截取MG=BG,連接DM,∠AGF的角平分線交DM于點N.
①依題意補全圖形;
②用等式表示線段MN與ND的數(shù)量關(guān)系,并證明.發(fā)布:2025/5/22 14:0:1組卷:1952引用:3難度:0.3 -
2.(1)問題提出
如圖1,在直角△ABC中,∠ACB=90°,AC=6,BC=8,D為邊AB上的一個動點,連接CD,則CD的最小長度為 .
(2)問題探究
如圖2,在矩形ABCD中,四邊形EFGH為矩形的內(nèi)接四邊形,點E,F(xiàn),G,H分別在AD,AB,BC,CD上.FH為對角線,且滿足FH∥AD,若AD=6,AB=4,則四邊形EFGH的面積是否為定值?若是,求出該定值;若不是,請說明理由.
(3)問題解決
如圖3,某果蔬基地規(guī)劃修建一片試驗區(qū),并將試驗區(qū)劃分為四個區(qū)域.按照設(shè)計圖的思路,試驗區(qū)的平面示意圖為四邊形ABCD,∠ADC=90°,點O在四邊形ABCD的對角線AC上,且滿足OD=50m,CD=110m,OB∥AD,∠OBC=30°,設(shè)BO=x m,.S△ABC=ym2
①請寫出y關(guān)于x的函數(shù)關(guān)系式;
②由于果蔬基地占地有限,探究y是否存在最小值.若存在,求出y值;若不存在,請說明理由.發(fā)布:2025/5/22 14:0:1組卷:268引用:2難度:0.1 -
3.問題提出
(1)如圖1,在△ABC中,點D在BC上,連接AD,CD=2BD,則△ABD與△ACD的面積之比為 ;
問題探究
(2)如圖2,在矩形ABCD中,AB=4,BC=8,點P為矩形內(nèi)一動點,在點P運動的過程中始終有∠APB=45°,求△APB面積的最大值;(結(jié)果保留根號)
問題解決
(3)如圖3,某市欲規(guī)劃一塊形如平行四邊形ABCD的休閑旅游觀光區(qū),點A為觀光區(qū)的入口,并滿足∠BAD=120°,要求在邊BC上確定一點E為觀光區(qū)的南門,為了方便市民游覽,修建一條觀光通道AE(觀光通道的寬度不計),且BE=2CE,AE=300米,為了容納盡可能多的游客,要求平行四邊形ABCD的面積最大,請問是否存在滿足上述條件的面積最大的平行四邊形ABCD?若存在,求出平行四邊形ABCD的最大面積;若不存在,請說明理由.(結(jié)果保留根號)發(fā)布:2025/5/22 14:0:1組卷:735引用:4難度:0.1
相關(guān)試卷