綜合與探究:
如圖,已知拋物線y=-38x2+94x+6與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C.直線BC與拋物線的對稱軸交于點E.將直線BC沿射線CO方向向下平移n個單位,平移后的直線與直線AC交于點F,與拋物線的對稱軸交于點D.

(1)求出點A,B,C的坐標,并直接寫出直線AC,BC的解析式;
(2)當△CDB是以BC為斜邊的直角三角形時,求出n的值;
(3)直線BC上是否存在一點P,使以點D,E,F,P為頂點的四邊形是菱形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
y
=
-
3
8
x
2
+
9
4
x
+
6
【考點】二次函數綜合題.
【答案】(1)A(-2,0),B(8,0),C(0,6),直線AC的解析式為y=3x+6,直線BC的解析式為y=-x+6;
(2);
(3)存在,(8,0)或(-,).
3
4
(2)
3
+
8
6
4
(3)存在,(8,0)或(-
3
2
57
8
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/27 8:0:9組卷:1045引用:3難度:0.5
相似題
-
1.如圖,對稱軸為直線x=1的拋物線y=x2-bx+c與x軸交于A、B兩點,與y軸交于C點,且OB=OC.
(1)求拋物線的解析式;
(2)拋物線頂點為D,直線BD交y軸于E點;
①設點P為線段BD上一點(點P不與B、D兩點重合),過點P作x軸的垂線與拋物線交于點F,求△BDF面積的最大值;
②在線段BD上是否存在點Q,使得∠BDC=∠QCE?若存在,求出點Q的坐標;若不存在,請說明理由.發布:2025/5/24 9:30:2組卷:191引用:2難度:0.1 -
2.如圖,二次函數
與x軸交于O(0,0),A(4,0)兩點,頂點為C,連接OC、AC,若點B是線段OA上一動點,連接BC,將△ABC沿BC折疊后,點A落在點A'的位置,線段A'C與x軸交于點D,且點D與O、A點不重合.y=12x2+bx+c
(1)求二次函數的表達式;
(2)①求證:△OCD∽△A'BD;
②求的最小值.DBBA發布:2025/5/24 9:30:2組卷:300引用:2難度:0.1 -
3.在平面直角坐標系中,O為坐標原點,拋物線y=ax2+2ax+c與x軸交于點A,B,與y軸交于點C,點A的坐標為(2,0),點
在拋物線上.D(-3,52)
(1)求拋物線的表達式;
(2)如圖①,點P在y軸上,且點P在點C的下方,若∠PDC=45°,求點P的坐標;
(3)如圖②,E為線段CD上的動點,射線OE與線段AD交于點M,與拋物線交于點N,求的最大值.MNOM發布:2025/5/24 9:30:2組卷:1691引用:11難度:0.1