[閱讀理解]
“倍長中線”是初中數(shù)學一種重要的思想方法.如圖1,在△ABC中,AD是BC邊上的中線,若延長AD至E,使DE=AD,連接CE,可根據(jù)SAB證明△ABD≌△ECD,則AB=EC.

[問題提出]
(1)如圖2,平行四邊形ABCD中,點E為CD邊的中點,在BC邊上找一點F,使得AF=AD+CF(要求:用直尺和圓規(guī)作圖,保留作圖痕跡,不寫作法).
(2)按照你(1)中的作圖過程證明:AF=AD+CF.
【考點】四邊形綜合題.
【答案】(1)作圖過程見解答;
(2)證明過程見解答.
(2)證明過程見解答.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/9 15:30:2組卷:265引用:3難度:0.1
相似題
-
1.在一次數(shù)學研究學習中,小明將兩個全等的直角三角形紙片ABC和DEF拼在一起,使點A與點F重合,點C與點D重合(如圖1),其中∠ACB=∠DFE=90°,BC=EF=6cm,AC=DF=8cm,并進行如下研究活動.
活動一:將圖1中的紙片DEF沿AC方向平移,連接AE,BD(如圖2),當點F與點C重合時停止平移.
[思考]圖2中的四邊形ABDE是平行四邊形嗎?請說明理由.
[發(fā)現(xiàn)]當紙片DEF平移到某一位置時,小明發(fā)現(xiàn)四邊形ABDE為矩形(如圖3).求AF的長.
活動二:在圖3中,取AD的中點O,再將紙片DEF繞點O順時針方向旋轉(zhuǎn)a度(0≤a≤90),連接OB,OE(如圖4).
[探究]當EF平分∠AEO時,探究OF與BD的數(shù)量關(guān)系,并說明理由.發(fā)布:2025/6/9 21:0:1組卷:144引用:2難度:0.2 -
2.【探究】在一次數(shù)學課上,老師出示了這樣一道題目:“如圖,在矩形ABCD中,AC:為對角線,AB<AD,E、F分別為邊BC、AD上的點,連接AE、CF,分別將△ABE和△CDF沿AE、CF翻折,使點B、D的對稱點G、H都落在AC上,求證:四邊形AECF是平行四邊形.”以下是兩名學生的解題方法:
甲學生的方法是:首先由矩形的性質(zhì)和軸對稱的性質(zhì)證得AB=CD,AD∥BC,∠AHF=90°,∠CGE=90°,易得AH=CG,可得△AFH≌△CEG(ASA),由平行四邊形的判定定理可得結(jié)論.
乙學生的方法是:不利用三角形全等知識,依據(jù)平行四邊形的定義證明.
(1)甲學生證明四邊形AECF是平行四邊形所用的判定定理的內(nèi)容是.
(2)用乙學生的方法完成證明過程.
【應(yīng)用】當學生們完成證明后,老師又提出了一個問題:
若四邊形AECF是菱形,則tan∠DAC的值為.發(fā)布:2025/6/9 19:0:2組卷:248引用:5難度:0.3 -
3.【證明體驗】(1)如圖(1),在△ABC中,∠ACB=2∠ABC,AD平分∠BAC交BC于D,點E在AB上,AE=AC,連結(jié)DE,求證:EB=CD.
【思考探究】(2)如圖(2),在(1)的條件下,過點C作CF∥DE交AB于點F,交AD于點G,若AB=6,AC=4,求FG的長.
【拓展延伸】(3)如圖(3),在四邊形ABCD中,∠BAC=90°,且∠ABC=∠BDC=∠ACD,若AB=4,CD=12,求BD的長.103發(fā)布:2025/6/9 19:30:1組卷:461引用:3難度:0.3