【概念理解】定義:我們把對角線互相垂直的四邊形叫做垂美四邊形如圖①.
我們學(xué)習(xí)過的四邊形中是垂美四邊形的是 菱形、正方形菱形、正方形;(寫出一種即可)
【性質(zhì)探究】
利用圖①,垂美四邊形ABCD兩組對邊AB,CD的平方和與BC,AD的平方和之間的數(shù)量關(guān)系是 AD2+BC2=AB2+CD2AD2+BC2=AB2+CD2;
【性質(zhì)應(yīng)用】
(1)如圖②,在△ABC中,BC=6,AC=8,D,E分別是AB,BC的中點(diǎn),連接AE,CD,若AE⊥CD,則AB的長為 271271;

(2)如圖③,等腰Rt△BCE和等腰Rt△ADE中,∠BEC=∠AED=90°,AC與BD交于O點(diǎn),BD與CE交于點(diǎn)F,AC與DE交于點(diǎn)G.若BE=6,AE=8,AB=12,求CD的長;
【拓展應(yīng)用】如圖④,在?ABCD中,點(diǎn)E、F、G分別是AD、AB、CD的中點(diǎn),EF⊥CF,AD=6,AB=8,求BG的長.
71
71
【考點(diǎn)】四邊形綜合題.
【答案】菱形、正方形;AD2+BC2=AB2+CD2;2
71
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:292引用:1難度:0.1
相似題
-
1.(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為.
(2)【拓展探究】
在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),請判斷線段BE與AF的數(shù)量關(guān)系,并就圖2的情形說明理由.
(3)【問題解決】
當(dāng)AB=AC=2,且第(2)中的正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí),請直接寫出線段AF的長.發(fā)布:2025/5/24 21:30:1組卷:328引用:4難度:0.2 -
2.如圖1,在矩形ABCD中,AB=5,BC=8,點(diǎn)E,F(xiàn)分別為AB,CD的中點(diǎn).
(1)四邊形AEFD是哪種特殊的平行四邊形?為什么?
(2)如圖2,點(diǎn)P是邊AD上一點(diǎn),BP交EF于點(diǎn)O,點(diǎn)A關(guān)于BP的對稱點(diǎn)為點(diǎn)M,當(dāng)點(diǎn)M落在線段EF上時(shí),請說明PB=2OM;
(3)如圖3,若點(diǎn)P是射線AD上一個(gè)動(dòng)點(diǎn),點(diǎn)A關(guān)于BP的對稱點(diǎn)為點(diǎn)M,連接AM,DM,當(dāng)△AMD是等腰三角形時(shí),請先直接寫出所有符合條件的線段AP的長,再任選1種情況說明理由.發(fā)布:2025/5/24 23:30:2組卷:60引用:2難度:0.2 -
3.在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A(0,2),C(2
,0),點(diǎn)D是對角線AC上一點(diǎn)(不與A、C重合),連接BD,作DE⊥BD,交x軸于點(diǎn)E,以線段DE、DB為鄰邊作矩形BDEF,連接BE,K為BE的中點(diǎn),分別連接DK,CK.3
(1)直接寫出點(diǎn)B的坐標(biāo);
(2)求證:DK=CK;
(3)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請求出AD的長;若不存在,請說明理由.發(fā)布:2025/5/24 22:30:1組卷:13引用:1難度:0.4
相關(guān)試卷