試卷征集
          加入會員
          操作視頻

          如圖,平面直角坐標系中有點A(-1,0)和y軸上一動點B(0,a),其中a>0,以B點為直角頂點在第二象限內作等腰直角△ABC,設點C的坐標為(c,d).

          (1)當a=2時,過點C作CE⊥y軸于E,則∠CEA=∠AOB
          ∵△ABC是等腰直角三角形,
          ∴AC=BA,∠BAC=90°,
          ∴∠ACE+∠CAE=90°=∠BAO+∠CAE,
          ∴∠ACE=∠BAO
          在△ACE和△BAO中,
          CEA
          =∠
          AOB
          ACE
          =∠
          BAO
          AC
          =
          BA

          ∴△ACE≌△BAO(AAS),
          ∵B(-1,0),A(0,2),
          ∴BO=AE=1,AO=CE=2,
          則C點坐標為(
          -2
          -2
          3
          3
          );
          (2)動點B在運動的過程中,試判斷c+d的值是否發生變化?若不變,請求出其值;若發生變化,請說明理由.
          (3)當a=2時,在坐標平面內是否存在一點P(不與點C重合),使△PAB與△ABC全等?若存在,直接寫出P點坐標;若不存在,請說明理由.

          【考點】三角形綜合題
          【答案】-2;3
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/9/24 17:0:1組卷:47引用:2難度:0.5
          相似題
          • 1.如圖1,△ABC和△CDE都是等邊三角形,且A,C,E在同一條直線上,分別連接AD,BE.
            (1)求證:AD=BE;
            (2)如圖2,連接BD,若M,N,Q分別為AB,DE,BD的中點,過N作NP⊥MN與MQ的延長線交于P,求證:MP=AD;
            (3)如圖3,設AD與BE交于F點,點M在AB上,MG∥AD,交BE于H,交CF的延長線于G,試判斷△FGH的形狀.

            發布:2025/5/24 17:0:2組卷:45引用:1難度:0.1
          • 2.仔細閱讀以下內容解決問題:第24屆國際數學家大會會標,設兩條直角邊的邊長為a,b,則面積為
            1
            2
            ab,四個直角三角形面積和小于正方形的面積得:a2+b2≥2ab,當且僅當a=b時取等號.在a2+b2≥2ab中,若a>0,b>0,用
            a
            b
            代替a,b得,a+b≥2
            ab
            ,即
            a
            +
            b
            2
            ab
            (*),我們把(*)式稱為基本不等式.利用基本不等式我們可以求這個式子的最大最小值.我們以“已知x為實數,求y=
            x
            2
            +
            4
            x
            2
            +
            1
            的最小值”為例給同學們介紹.
            解:由題知y=
            x
            2
            +
            1
            +
            3
            x
            2
            +
            1
            =
            x
            2
            +
            1
            +
            3
            x
            2
            +
            1

            x
            2
            +
            1
            >0,
            3
            x
            2
            +
            1
            >0,
            ∴y=
            x
            2
            +
            1
            +
            3
            x
            2
            +
            1
            2
            x
            2
            +
            1
            ?
            3
            x
            2
            +
            1
            =
            2
            3
            ,當且僅當
            x
            2
            +
            1
            =
            3
            x
            2
            +
            1
            時取等號,即當x=
            2
            時,函數的最小值為2
            3

            總結:利用基本不等式
            a
            +
            b
            2
            ab
            (a>0,b>0)求最值,若ab為定值.則a+b有最小值.
            請同學們根據以上所學的知識求下列函數的最值,并求出取得最值時相應x的取值.
            (1)若x>0,求y=2x+
            2
            x
            的最小值;
            (2)若x>2,求y=x+
            1
            x
            -
            2
            的最小值;
            (3)若x≥0,求y=
            x
            +
            4
            x
            +
            13
            x
            +
            2
            的最小值.

            發布:2025/5/24 19:30:1組卷:236引用:3難度:0.5
          • 3.(1)如圖1,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一點,AE=5,ED⊥AB,垂足為D,求AD的長.

            (2)類比探究:如圖2,△ABC中,AC=14,BC=6,點D,E分別在線段AB,AC上,∠EDB=∠ACB=60°,DE=2.求AD的長.
            (3)拓展延伸:如圖3,△ABC中,點D,點E分別在線段AB,AC上,∠EDB=∠ACB=60°.延長DE,BC交于點F,AD=4,DE=5,EF=6,DE<BD,
            BC
            AC
            =
            ;BD=

            發布:2025/5/24 16:30:1組卷:1046引用:6難度:0.1
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正