拋物線y=ax2+bx+2與x軸交于A(-1,0)、B(4,0).點P為拋物線上位于BC上方的一動點.

(1)求拋物線的解析式;
(2)如圖,過點P作PF⊥x軸于點F,交BC于點E,連接CP、CF.當S△PCE=2S△CEF時,求點P的坐標;
(3)過點P作PG⊥BC于點G,是否存在點P,使線段PG、CG的長度是2倍關系?若存在,求出點P的坐標;若不存在,請說明理由.
【考點】二次函數綜合題.
【答案】(1);
(2)P(2,3);
(3)點P的坐標為或(3,2).
y
=
-
1
2
x
2
+
3
2
x
+
2
(2)P(2,3);
(3)點P的坐標為
(
3
2
,
25
8
)
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/27 8:0:10組卷:136引用:2難度:0.2
相似題
-
1.已知拋物線y=ax2+bx-4交x軸于A(-1,0),B(4,0),交y軸于點C.
(1)求拋物線解析式;
(2)如圖1,P是第四象限內拋物線上的一點,PA交y軸于點D,連接BD,若∠ADB=90°,求點P的坐標;
(3)在(2)的條件下,Q是點C關于拋物線的對稱軸的對稱點,連接BP,CP,CQ(如圖2),在x軸上是否存在點R,使△PBR與△PQC相似?若存在,請求出點R的坐標;若不存在,請說明理由.發布:2025/5/26 5:30:2組卷:372難度:0.4 -
2.如圖(1),拋物線y=ax2+bx+6與x軸交于點A(-6,0)、B(2,0),與y軸交于點C,拋物線對稱軸交拋物線于點M,交x軸于點N.點P是拋物線上的動點,且位于x軸上方.
(1)求拋物線的解析式.
(2)如圖(2),點D與點C關于直線MN對稱,若∠CAD=∠CAP,求點P的坐標.
(3)直線BP交y軸于點E,交直線MN于點F,猜想線段OE、FM、MN三者之間存在的數量關系,并證明.發布:2025/5/26 5:30:2組卷:286引用:3難度:0.2 -
3.如圖,開口向下的拋物線y=-
(x-m)(x-2)與x軸正負半軸分別交于A、B點,與y軸交于C點,且AB=2OC;38
(1)直接寫出A點坐標( ,0),并求m的值;
(2)拋物線在第三象限內圖象上是否存在一點E,在y軸負半軸上有一點F,使以點C、點E、點F為頂點的三角形與△BOC相似,如果存在,求出F點坐標,如果不存在,說明理由;
(3)在線段BC上有一點P,連結PO、PA,若tan∠APO=,則直接寫出點P坐標( ,)12發布:2025/5/26 6:30:2組卷:746引用:1難度:0.1