已知拋物線 C:y=x2-2mx+2m+1.
(1)若拋物線C經過原點,則m的值為 -12-12,此時拋物線C的頂點坐標為 (-12,-14)(-12,-14).
(2)無論m為何值,拋物線C恒過一定點A,點A的坐標為 (1,2)(1,2).
(3)用含m的代數式表示拋物線C的頂點坐標,并說明無論m為何值,拋物線C的頂點都在同一條拋物線C'上.
(4)設拋物線C的頂點為B,當點B不與點A重合時,過點A作AE∥x軸,與拋物線C的另一交點為E,過點B作BD∥x軸,與拋物線C'的另一交點為D.
①求證:四邊形AEBD是平行四邊形;
②當?AEBD是菱形時,求m的值.
1
2
1
2
1
2
1
4
1
2
1
4
【考點】二次函數綜合題.
【答案】-;(-,-);(1,2)
1
2
1
2
1
4
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/25 13:0:1組卷:109引用:1難度:0.4
相似題
-
1.如圖1,拋物線y=ax2+bx+c與x軸相交于點A,點B,與y軸相交于點C,AO=BO=2,C(0,-4).
(1)求拋物線的解析式;
(2)如圖2,點P為CO上一點,過點P作CO的垂線,與拋物線相交于點E,點F(點E在點F的左側),設PF=m,PC=d,求d與m的函數解析式;
(3)如圖3,在(2)的條件下,連接EO,取EO的中點G,連接CG并延長CG至點Q,使得QG=CG,取CP的中點H,連接FH并延長FH交拋物線于點T,連接TQ,若tan∠FTQ=,求點F的坐標.169發布:2025/5/26 1:30:1組卷:202引用:1難度:0.1 -
2.在平面直角坐標系xOy中,拋物線T:y=a(x+4)(x-m)與x軸交于A,B兩點,m>-3,點B在點A的右側,拋物線T的頂點為記為P.
(1)求點A和點B的坐標;(用含m的代數式表示)
(2)若a=m+3,且△ABP為等腰直角三角形,求拋物線T的解析式;
(3)將拋物線T進行平移得到拋物線T',拋物線T'與x軸交于點B,C(4,0),拋物線T'的頂點記為Q.若0<a<,且點C在點B的右側,是否存在直線AP與CQ垂直的情形?若存在,求m的取值范圍;若不存在,請說明理由.12發布:2025/5/26 1:30:1組卷:185引用:2難度:0.2 -
3.如圖,在平面直角坐標系中,拋物線y=ax2+bx+4與x軸交于A、B兩點(點A在原點左側,點B在原點右側),與y軸交于點C,已知OA=1,OC=OB.
(1)求拋物線的解析式;
(2)若D(2,m)在該拋物線上,連接CD、DB,求四邊形OCDB 的面積;
(3)設E是該拋物線上位于對稱軸右側的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點E作EH⊥x軸于點H,再過點F作FG⊥x軸于點G,得到矩形EFGH,在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長.發布:2025/5/26 1:30:1組卷:277引用:2難度:0.3