設函數f(x)=ax-1x+1,其中a∈R.
(1)若a=1,f(x)的定義域為區間[0,3],求f(x)的最大值和最小值;
(2)若f(x)的定義域為區間(0,+∞),求a的取值范圍,使f(x)在定義域內是單調減函數.
ax
-
1
x
+
1
【考點】由函數的單調性求解函數或參數;函數的值域.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/8/2 8:0:9組卷:356引用:15難度:0.3
相似題
-
1.已知函數
為減函數,則a的取值范圍是.f(x)=ax(x<0)(a-3)x+4a(x≥0)發布:2024/12/29 11:30:2組卷:92引用:5難度:0.5 -
2.已知函數
,且f(a2)+f(3a-4)>2,則實數a的取值范圍是( )f(x)=2x-12x+1+3x+1A.(-4,1) B.(-∞,-4)∪(1,+∞) C.(-∞,-1)∪(4,+∞) D.(-1,4) 發布:2024/12/29 11:30:2組卷:957引用:3難度:0.5 -
3.下列函數在定義域上為增函數的有( )
A.f(x)=2x4 B.f(x)=xex C.f(x)=x-cosx D.f(x)=ex-e-x-2x 發布:2024/12/29 6:30:1組卷:135引用:9難度:0.7