問題提出:
(1)如圖①,已知線段AB,試在其上方確定一點C,使∠ACB=90°,且△ABC的面積最大,請畫出符合條件的△ABC.
問題探究:
(2)如圖②,在矩形ABCD中,點E在BC邊上,且BE=3CE,連接DE、AE,若AE=12,求△AED面積的最大值.
問題解決:
(3)某市新建成一迎賓廣場,園林部門準(zhǔn)備在“三?八”節(jié)前,用少量資金對廣場一角進(jìn)行綠化美化改造,以提升城市形象.根據(jù)地形特點,準(zhǔn)備設(shè)計一個由三條線段AD、AB、BC及一段?CD組成的區(qū)域,并在其內(nèi)部栽花種草進(jìn)行美化.如圖③所示,?CD在以AB為直徑的半圓上,圓心為O,AB=12米,為保證最佳觀賞效果,要求?CD的長為2π,已知栽花種草每平方米費用為50元(含所有花費),園林部門準(zhǔn)備了2600元用于上述區(qū)域的綠化工作,請問是否可滿足本次綠化美化改造最大費用的需求?(參考數(shù)據(jù)3≈1.73,π≈3.14)

?
CD
?
CD
?
CD
3
【考點】圓的綜合題.
【答案】(1)作圖詳見解答;
(2)48;
(3)園林部門準(zhǔn)備了2600元用于上述區(qū)域的綠化工作,可滿足本次綠化美化改造最大費用的需求.
(2)48;
(3)園林部門準(zhǔn)備了2600元用于上述區(qū)域的綠化工作,可滿足本次綠化美化改造最大費用的需求.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/24 13:0:1組卷:540引用:1難度:0.1
相似題
-
1.小亮學(xué)習(xí)了圓周角定理的推論“圓內(nèi)接四邊形對角互補”后,勇于思考大膽創(chuàng)新,并結(jié)合三角形的角平分線的性質(zhì)進(jìn)行了以下思考和發(fā)現(xiàn):
(1)①如圖1,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠B=85°,則∠ADE=;
②如圖2,在△ABC中,BE,CE分別平分∠ABC和∠ACD,BE,CE相交于點E,∠A=42°,則∠E=°;
(2)小亮根據(jù)這個發(fā)現(xiàn),又進(jìn)行了以下深入研究:
如圖3,四邊形ABCD內(nèi)接于⊙O,對角線BD是⊙O的直徑,AC=BC,點F是弧AD的中點,求∠E的度數(shù)[(1)中的結(jié)論可直接用].發(fā)布:2025/5/24 19:30:1組卷:127引用:1難度:0.4 -
2.如圖1,在等腰△ABC中,AB=AC,AO平分∠BAC且交BC于點O,AB與⊙O相切于點D,OC交⊙O于點H,連接OD.
(1)求證:AC是⊙O的切線;
(2)延長DO、AC交于點E,若CE=OC,求證:OA=OE;
(3)在(2)的條件下,連接DH交AO于點K,若OK?AK=8-12,求⊙O的半徑并直接寫出DK?HK的值.3發(fā)布:2025/5/24 19:30:1組卷:184引用:1難度:0.1 -
3.點E為正方形ABCD的邊CD上一動點,直線AE與BD相交于點F,與BC的延長線相交于點G.
(1)如圖①,若正方形的邊長為2,設(shè)DE=x,△DEG的面積為y,求y與x的函數(shù)關(guān)系;
(2)如圖②,求證:CF是△ECG的外接圓的切線;
(3)如果把正方形ABCD換成是矩形或菱形,(2)的結(jié)論是否仍然成立?發(fā)布:2025/5/24 18:30:1組卷:91引用:1難度:0.1