定義:兩個連續函數(圖象不間斷)f(x),g(x)在區間[a,b]上都有意義,我們稱函數|f(x)+g(x)|在[a,b]上的最大值叫做函數f(x)與g(x)在區間[a,b]上的“絕對和”.
(1)試求函數f(x)=x2與g(x)=x(x+2)(x-4)在閉區間[-2,2]上的“絕對和”.
(2)設hm(x)=-4x+m及f(x)=x2都是定義在閉區間[1,3]上,記hm(x)與f(x)的“絕對和”為Dm,如果D(m)的最小值是D(m0),則稱f(x)可用hm0(x)“替代”,試求m0的值,使f(x)可用hm0(x)“替代”.
h
m
0
(
x
)
h
m
0
(
x
)
【考點】利用導數研究函數的單調性.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:16引用:5難度:0.1
相似題
-
1.已知函數f(x)=x3-2kx2+x-3在R上不單調,則k的取值范圍是 ;
發布:2024/12/29 13:0:1組卷:236引用:3難度:0.8 -
2.在R上可導的函數f(x)的圖象如圖示,f′(x)為函數f(x)的導數,則關于x的不等式x?f′(x)<0的解集為( )
A.(-∞,-1)∪(0,1) B.(-2,-1)∪(1,2) C.(-1,0)∪(1,+∞) D.(-∞,-2)∪(2,+∞) 發布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數f(x)在(0,+∞)上單調遞增,求實數a的取值范圍;
(Ⅱ)若函數f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發布:2024/12/29 13:30:1組卷:143引用:2難度:0.2