如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a,b,c是Rt△ABC和Rt△BED邊長(zhǎng),易知AE=2c,這時(shí)我們把關(guān)于x的形如ax2+2cx+b=0的一元二次方程稱(chēng)為“勾系一元二次方程”.請(qǐng)解決下列問(wèn)題:
(1)寫(xiě)出一個(gè)“勾系一元二次方程”3x2+52x+4=03x2+52x+4=0;
(2)求證:關(guān)于x的“勾系一元二次方程”ax2+2cx+b=0必有實(shí)數(shù)根;
(3)若x=-1是“勾系一元二次方程”ax2+2cx+b=0的一個(gè)根,且四邊形ACDE的周長(zhǎng)是62,求△ABC面積.
2
2
2
2
2
2
2
【考點(diǎn)】四邊形綜合題.
【答案】3x2+5x+4=0
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:370引用:9難度:0.2
相似題
-
1.如圖,在Rt△ABC中,∠B=90°,BC=5
,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.3
(1)求AB,AC的長(zhǎng);
(2)求證:AE=DF;
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說(shuō)明理由.
(4)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.發(fā)布:2025/6/7 18:30:1組卷:843引用:4難度:0.3 -
2.如圖,在Rt△ABC中,∠C=90°,AC=16厘米,BC=20厘米,點(diǎn)D在BC上,且CD=12厘米.現(xiàn)有兩個(gè)動(dòng)點(diǎn)P,Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),其中點(diǎn)P以4厘米/秒的速度沿AC向終點(diǎn)C運(yùn)動(dòng);點(diǎn)Q以5厘米/秒的速度沿BC向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)P作PE∥BC交AD于點(diǎn)E,連接EQ.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)CP=;(用t的代數(shù)式表示)
(2)連接CE,并運(yùn)用割補(bǔ)的思想表示△AEC的面積(用t的代數(shù)式表示);
(3)是否存在某一時(shí)刻t,使四邊形EQDP是平行四邊形,如果存在,請(qǐng)求出t,如果不存在,請(qǐng)說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△EDQ為直角三角形.發(fā)布:2025/6/7 17:0:1組卷:348引用:3難度:0.1 -
3.如圖,在△ABC中,點(diǎn)O是AC邊上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交△BCA的外角∠ACG的平分線于點(diǎn)F.
(1)探究OE與OF的數(shù)量關(guān)系并加以以證明;
(2)連接BE,BF,當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)時(shí),四邊形BCFE可能為菱形嗎?若可能,請(qǐng)證明;若不可能,請(qǐng)說(shuō)明理由;
(3)連接AE,AF,當(dāng)點(diǎn)O在AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?請(qǐng)說(shuō)明理由;
(4)在(3)的條件下,△ABC滿足什么條件時(shí),四邊形AECF是正方形?請(qǐng)說(shuō)明理由.發(fā)布:2025/6/7 17:0:1組卷:299引用:2難度:0.4