將正偶數(shù)按照如下規(guī)律進(jìn)行分組排列,依次為(2),(4,6),(8,10,12),(14,16,18,20),…,我們稱4是第2組第1個(gè)數(shù)字,16是第4組第2個(gè)數(shù)字,若2020是第m組第n個(gè)數(shù)字,則m+n=6565.
【考點(diǎn)】規(guī)律型:數(shù)字的變化類.
【答案】65
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/24 1:0:1組卷:953引用:7難度:0.6
相似題
-
1.觀察一下等式:
第一個(gè)等式:,12=1-12
第二個(gè)等式:,12+122=1-122
第三個(gè)等式:,12+122+123=1-123
…
按照以上規(guī)律,解決下列問(wèn)題:
(1);12+122+123+124=1-
(2)寫(xiě)出第五個(gè)式子:;
(3)用含n(n為正整數(shù))的式子表示一般規(guī)律:;12+122+123+???+12n=1-
(4)計(jì)算(要求寫(xiě)出過(guò)程):.32+322+323+324+325+326發(fā)布:2025/5/24 9:0:1組卷:227引用:3難度:0.7 -
2.觀察下列等式的規(guī)律,解答下列問(wèn)題:
第1個(gè)等式:12+22+32=3×22+2.
第2個(gè)等式:22+32+42=3×32+2
第3個(gè)等式:32+42+52=3×42+2.
第4個(gè)等式:42+52+62=3×52+2.
……
(1)請(qǐng)你寫(xiě)出第5個(gè)等式:.
(2)寫(xiě)出你猜想的第n個(gè)等式(用含n的式子表示),并證明.發(fā)布:2025/5/24 6:30:2組卷:73引用:3難度:0.7 -
3.觀察下列式子:①2×4+1=9,②4×6+1=25,③6×8+1=49,
(1)請(qǐng)寫(xiě)出第5個(gè)等式:;
(2)根據(jù)你發(fā)現(xiàn)的規(guī)律,請(qǐng)寫(xiě)出第n個(gè)等式:2n(2n+2)+1=.
(3)試用所學(xué)知識(shí)說(shuō)明你所寫(xiě)出的等式的正確性;發(fā)布:2025/5/24 7:0:1組卷:91引用:3難度:0.7
相關(guān)試卷