已知數列{an}的首項為1,f(n)=a1C1n+a2C2n+…+akCkn+…+anCnn(n∈N+).
(1)若{an}為常數列,求f(4)的值;
(2)若{an}為公比為2的等比數列,求f(n)的解析式;
(3)數列{an}能否成等差數列,使得f(n)-1=(n-1)2n對一切n∈N+都成立.若能,求出數列{an}的通項公式;若不能,試說明理由.
f
(
n
)
=
a
1
C
1
n
+
a
2
C
2
n
+
…
+
a
k
C
k
n
+
…
+
a
n
C
n
n
【考點】數列與函數的綜合.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:28引用:3難度:0.5
相似題
-
1.已知點A
是函數f(x)=ax(a>0且a≠1)的圖象上一點,等比數列an的前n項和為f(n)-c,數列bn(bn>0)的首項為c,且前n項和Sn滿足(1,13)(n≥2).Sn-Sn-1=Sn+Sn-1
(1)求數列{an}與{bn}的通項公式.
(2)若數列的前n項和為Tn,問滿足Tn{1bnbn+1}的最小整數是多少?>10002011
(3)若,求數列Cn的前n項和Pn.Cn=-2bnan發布:2025/1/12 8:0:1組卷:36引用:3難度:0.1 -
2.已知一組2n(n∈N*)個數據:a1,a2,…,a2n,滿足:a1≤a2≤…≤a2n,平均值為M,中位數為N,方差為s2,則( )
A.an≤M≤an+1 B.an≤N≤an+1 C.函數 的最小值為2ns2f(x)=2n∑i=1(x-ai)2D.若a1,a2,…,a2n成等差數列,則M=N 發布:2024/12/29 7:30:2組卷:54引用:4難度:0.5 -
3.已知公比為q的正項等比數列{an},其首項a1>1,前n項和為Sn,前n項積為Tn,且函數f(x)=x(x+a1)(x+a2)?(x+a9)在點(0,0)處切線斜率為1,則( )
A.數列{an}單調遞增 B.數列{lgan}單調遞減 C.n=4或5時,Tn取值最大 D. Sn<1q4(1-q)發布:2024/12/29 10:30:1組卷:36引用:3難度:0.5