試卷征集
          加入會員
          操作視頻
          當前位置: 試題詳情

          已知點A
          1
          1
          3
          是函數f(x)=ax(a>0且a≠1)的圖象上一點,等比數列an的前n項和為f(n)-c,數列bn(bn>0)的首項為c,且前n項和Sn滿足
          S
          n
          -
          S
          n
          -
          1
          =
          S
          n
          +
          S
          n
          -
          1
          (n≥2).
          (1)求數列{an}與{bn}的通項公式.
          (2)若數列
          {
          1
          b
          n
          b
          n
          +
          1
          }
          的前n項和為Tn,問滿足Tn
          1000
          2011
          的最小整數是多少?
          (3)若
          C
          n
          =
          -
          2
          b
          n
          a
          n
          ,求數列Cn的前n項和Pn

          【答案】見試題解答內容
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2025/1/12 8:0:1組卷:36引用:3難度:0.1
          相似題
          • 1.先閱讀參考材料,再解決此問題:
            參考材料:求拋物線弧y=x2(0≤x≤2)與x軸及直線x=2圍成的封閉圖形的面積
            解:把區間[0,2]進行n等分,得n-1個分點A(
            2
            i
            n
            ,0)(i=1,2,3,…,n-1),過分點Ai,作x軸的垂線,交拋物線于Bi,并如圖構造n-1個矩形,先求出n-1個矩形的面積和Sn-1,再求
            lim
            n
            →∞
            Sn-1,即是封閉圖形的面積,又每個矩形的寬為
            2
            n
            ,第i個矩形的高為(
            2
            i
            n
            2,所以第i個矩形的面積為
            2
            n
            ?(
            2
            i
            n
            2
            Sn-1=
            2
            n
            [
            4
            ?
            1
            2
            n
            2
            +
            4
            ?
            2
            2
            n
            2
            +
            4
            ?
            3
            2
            n
            2
            +…+
            4
            ?
            n
            -
            1
            2
            n
            2
            ]=
            8
            n
            3
            [12+22+32+…+(n-1)2]=
            8
            n
            3
            ?
            n
            n
            -
            1
            2
            n
            -
            1
            6

            所以封閉圖形的面積為
            lim
            n
            →∞
            8
            n
            3
            ?
            n
            n
            -
            1
            2
            n
            -
            1
            6
            =
            8
            3

            閱讀以上材料,并解決此問題:已知對任意大于4的正整數n,不等式
            1
            -
            1
            2
            n
            2
            +
            1
            -
            2
            2
            n
            2
            +
            1
            -
            3
            2
            n
            2
            +…+
            1
            -
            n
            -
            1
            2
            n
            2
            <an恒成立,則實數a的取值范圍為

            發布:2024/12/29 7:0:1組卷:72引用:2難度:0.5
          • 2.已知一組2n(n∈N*)個數據:a1,a2,…,a2n,滿足:a1≤a2≤…≤a2n,平均值為M,中位數為N,方差為s2,則(  )

            發布:2024/12/29 7:30:2組卷:54引用:4難度:0.5
          • 3.已知公比為q的正項等比數列{an},其首項a1>1,前n項和為Sn,前n項積為Tn,且函數f(x)=x(x+a1)(x+a2)?(x+a9)在點(0,0)處切線斜率為1,則(  )

            發布:2024/12/29 10:30:1組卷:36引用:3難度:0.5
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正