把代數式通過配方等手段得到完全平方式,再運用完全平方式的非負性這一性質解決問題,這種解題方法叫做配方法.配方法在代數式求值,解方程,最值問題等都有廣泛的應用.如利用配方法求最小值,求a2+6a+8的最小值.
解:a2+6a+8=a2+6a+32-32+8=(a+3)2-1,因為不論a取何值,(a+3)2總是非負數,即(a+3)2≥0.
所以(a+3)2-1≥-1,所以當a=-3時,a2+6a+8有最小值-1.
根據上述材料,解答下列問題:
(1)在橫線上添上一個常數項使之成為完全平方式:a2+14a+4949;
(2)將x2-10x+27變形為(x-m)2+n的形式,并求出x2-10x+27的最小值;
(3)若代數式N=-a2+8a+1,試求N的最大值;
【考點】配方法的應用;非負數的性質:偶次方.
【答案】49
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/19 8:0:9組卷:543引用:8難度:0.5
相似題
-
1.設x,y都是實數,請探究下列問題,
(1)嘗試:①當x=-2,y=1時,∵x2+y2=5,2xy=-4,∴x2+y2>2xy.
②當x=1,y=2時,∵x2+y2=5,2xy=4,∴x2+y2>2xy.
③當x=2,y=2.5時,∵x2+y2=10.25,2xy=10,∴x2+y2>2xy.
④當x=3,y=3時,∵x2+y2=18,2xy=18,∴x2+y22xy.
(2)歸納:x2+y2與2xy有怎樣的大小關系?試說明理由.
(3)運用:求代數式的最小值.x2+4x2發布:2025/5/21 17:30:1組卷:188引用:2難度:0.5 -
2.關于x的一元二次方程新定義:若關于x的一元二次方程:a1(x-m)2+n=0與a2(x-m)2+n=0,稱為“同族二次方程”.如2(x-3)2+4=0與3(x-3)2+4=0就是“同族二次方程”.現有關于x的一元二次方程:2(x-1)2+1=0與(a+2)x2+(b-4)x+8=0是“同族二次方程”.那么代數式-ax2+bx+2015取的最大值是( )
A.2020 B.2021 C.2022 D.2023 發布:2025/5/24 6:0:2組卷:272引用:3難度:0.6 -
3.基本不等式的性質:一般地,對于a>0,b>0,我們有a+b≥2
,當且僅當a=b時等號成立.例如:若a>0,則a+ab=6,當且僅當a=3時取等號,a+9a≥2a?9a的最小值等于6.根據上述性質和運算過程,若x>1,則4x+9a的最小值是( )1x-1A.6 B.8 C.10 D.12 發布:2025/5/23 13:30:1組卷:839引用:6難度:0.4