試卷征集
          加入會員
          操作視頻

          把代數式通過配方等手段得到完全平方式,再運用完全平方式的非負性這一性質解決問題,這種解題方法叫做配方法.配方法在代數式求值,解方程,最值問題等都有廣泛的應用.如利用配方法求最小值,求a2+6a+8的最小值.
          解:a2+6a+8=a2+6a+32-32+8=(a+3)2-1,因為不論a取何值,(a+3)2總是非負數,即(a+3)2≥0.
          所以(a+3)2-1≥-1,所以當a=-3時,a2+6a+8有最小值-1.
          根據上述材料,解答下列問題:
          (1)在橫線上添上一個常數項使之成為完全平方式:a2+14a+
          49
          49

          (2)將x2-10x+27變形為(x-m)2+n的形式,并求出x2-10x+27的最小值;
          (3)若代數式N=-a2+8a+1,試求N的最大值;

          【答案】49
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/19 8:0:9組卷:543引用:8難度:0.5
          相似題
          • 1.設x,y都是實數,請探究下列問題,
            (1)嘗試:①當x=-2,y=1時,∵x2+y2=5,2xy=-4,∴x2+y2>2xy.
            ②當x=1,y=2時,∵x2+y2=5,2xy=4,∴x2+y2>2xy.
            ③當x=2,y=2.5時,∵x2+y2=10.25,2xy=10,∴x2+y2>2xy.
            ④當x=3,y=3時,∵x2+y2=18,2xy=18,∴x2+y2
            2xy.
            (2)歸納:x2+y2與2xy有怎樣的大小關系?試說明理由.
            (3)運用:求代數式
            x
            2
            +
            4
            x
            2
            的最小值.

            發布:2025/5/21 17:30:1組卷:188引用:2難度:0.5
          • 2.關于x的一元二次方程新定義:若關于x的一元二次方程:a1(x-m)2+n=0與a2(x-m)2+n=0,稱為“同族二次方程”.如2(x-3)2+4=0與3(x-3)2+4=0就是“同族二次方程”.現有關于x的一元二次方程:2(x-1)2+1=0與(a+2)x2+(b-4)x+8=0是“同族二次方程”.那么代數式-ax2+bx+2015取的最大值是(  )

            發布:2025/5/24 6:0:2組卷:272引用:3難度:0.6
          • 3.基本不等式的性質:一般地,對于a>0,b>0,我們有a+b≥2
            ab
            ,當且僅當a=b時等號成立.例如:若a>0,則a+
            9
            a
            2
            a
            ?
            9
            a
            =6,當且僅當a=3時取等號,a+
            9
            a
            的最小值等于6.根據上述性質和運算過程,若x>1,則4x+
            1
            x
            -
            1
            的最小值是(  )

            發布:2025/5/23 13:30:1組卷:839引用:6難度:0.4
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正