試卷征集
          加入會(huì)員
          操作視頻

          勾股定理是人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一,西方國(guó)家稱之為畢達(dá)哥拉斯定理.在我國(guó)古書(shū)《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”(如圖1),后人稱之為“趙爽弦圖”,流傳至今.

          (1)①如圖2,3,4,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,面積分別為S1,S2,S3,利用勾股定理,判斷這3個(gè)圖形中面積關(guān)系滿足S1+S2=S3的有
          3
          3
          個(gè).
          ②如圖5,分別以直角三角形三邊為直徑作半圓,設(shè)圖中兩個(gè)月牙形圖案(圖中陰影部分)的面積分別為S1,S2,直角三角形面積為S3,也滿足S1+S2=S3嗎?若滿足,請(qǐng)證明;若不滿足,請(qǐng)求出S1,S2,S3的數(shù)量關(guān)系.
          (2)如果以正方形一邊為斜邊向外作直角三角形,再以該直角三角形的兩直角邊分別向外作正方形,重復(fù)這一過(guò)程就可以得到如圖6所示的“勾股樹(shù)”.在如圖7所示的“勾股樹(shù)”的某部分圖形中,設(shè)大正方形M的邊長(zhǎng)為定值m,四個(gè)小正方形A,B,C,D的邊長(zhǎng)分別為a,b,c,d,則a2+b2+c2+d2=
          m2
          m2

          【考點(diǎn)】勾股定理的證明
          【答案】3;m2
          【解答】
          【點(diǎn)評(píng)】
          聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
          發(fā)布:2024/4/20 14:35:0組卷:664引用:4難度:0.6
          相似題
          • 1.魏晉時(shí)期,偉大數(shù)學(xué)家劉徽利用如圖通過(guò)“以盈補(bǔ)虛,出入相補(bǔ)”的方法,即“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類”證明了勾股定理,若圖中BF=2,CF=4,則AE的長(zhǎng)為
             

            發(fā)布:2025/5/23 19:0:2組卷:801引用:5難度:0.5
          • 2.如圖,我國(guó)古代的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形密鋪構(gòu)成的大正方形,若小正方形的面積為1,大正方形的面積為13,則直角三角形較短的直角邊a與較長(zhǎng)的直角邊b的比
            a
            b
            的值是

            發(fā)布:2025/5/24 6:0:2組卷:481引用:5難度:0.6
          • 3.公元三世紀(jì),我國(guó)漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的“趙爽弦圖”如圖所示,它是由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形.如果大正方形的面積是125,小正方形面積是25,則tanθ的值為( ?。?/h2>

            發(fā)布:2025/5/23 22:0:2組卷:95引用:2難度:0.6
          APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
          本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正