閱讀下面的題目及分析過程,并按要求進行證明.
已知:如圖,點E是BC的中點,點A在DE上,且∠BAE=∠CDE.
求證:AB=CD.
分析:證明兩條線段相等,常用的方法是應用全等三角形或等腰三角形的判定和性質,觀察本題中要證明的兩條線段,它們不在同一個三角形中,且它們分別所在的兩個三角形也不全等,因此,要證AB=CD,必須添加適當的輔助線,構造全等三角形或等腰三角形.
(1)現給出如下兩種添加輔助線的方法,請任意選出其中一種,對原題進行證明.
①如圖1,延長DE到點F,使EF=DE,連接BF;
②如圖2,分別過點B、C作BF⊥DE,CG⊥DE,垂足分別為點F,G.
(2)請你在圖3中添加不同于上述的輔助線,并對原題進行證明.

【考點】三角形綜合題.
【答案】(1)(2)(3)證明見解答.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:1521引用:3難度:0.4
相似題
-
1.如圖(1),已知CA=CB,CD=CE,且∠ACB=∠DCE,將△DCE繞C點旋轉(A、C、D三點在同一直線上除外).
(1)求證:△ACD≌△BCE;
(2)在△DCE繞C點旋轉的過程中,若ED、AB所在的直線交于點F,當點F為邊AB的中點時,如圖2所示.求證:∠ADF=∠BEF(提示:利用類倍長中線方法添加輔助線);
(3)在(2)的條件下,求證:AD⊥CD.發布:2025/6/5 4:0:1組卷:1141引用:12難度:0.3 -
2.如圖,△ABC為等邊三角形,直線l經過點C,在l上位于C點右側的點D滿足∠BDC=60°.
(1)如圖1,在l上位于C點左側取一點E,使∠AEC=60°,求證:△AEC≌△CDB;
(2)如圖2,點F、G在直線l上,連接AF,在l上方作∠AFH=120°,且AF=HF,∠HGF=120°,求證:HG+BD=CF;
(3)在(2)的條件下,當A、B位于直線l兩側,其余條件不變時(如圖3),線段HG、CF、BD的數量關系為.發布:2025/6/5 5:0:1組卷:2123引用:6難度:0.1 -
3.已知,如圖1,△ABC中,AC=BC,D,E分別是線段AC,AB的中點,且滿足DE∥BC,BC=2DE,P為邊AB上一動點,連接DP,以DP為一邊在右側作△DPQ,使DP=DQ,且∠PDQ=∠ACB,連接EQ并延長交直線BC于點H.
(1)求證:△APD≌△EQD;
(2)若∠ACB=120°,判斷線段BC與線段CH的數量關系,并說明理由;
(3)在(2)的條件下,延長DQ交BC于點G,若AC=6,當△HQG為直角三角形時,求AP的長度.發布:2025/6/5 3:30:1組卷:195引用:1難度:0.1