已知函數(shù)f(x)=x3+bx2+cx,(b,c∈R).
(1)當(dāng)c=1時(shí),討論函數(shù)f(x)單調(diào)性;
(2)設(shè)x1,x2是函數(shù)f(x)的兩個(gè)極值點(diǎn),當(dāng)|x1-x2|=2時(shí),求f(1)的最小值.
【答案】(1)當(dāng)|b|≤時(shí),f(x)R上單調(diào)遞增;
當(dāng)|b|>時(shí),f(x)在(-∞,),(,+∞)上單調(diào)遞增,在(,)上單調(diào)遞減.
(2)-.
3
當(dāng)|b|>
3
-
b
-
b
2
-
3
3
-
b
+
b
2
-
3
3
-
b
-
b
2
-
3
3
-
b
+
b
2
-
3
3
(2)-
11
4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:152引用:2難度:0.4
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:237引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( )
A.(-∞,-1)∪(0,1) B.(-2,-1)∪(1,2) C.(-1,0)∪(1,+∞) D.(-∞,-2)∪(2,+∞) 發(fā)布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:144引用:2難度:0.2