給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.
(1)以下四邊形中,是勾股四邊形的為 ②③②③(填序號即可);
①平行四邊形;②矩形;③有一個角為直角的任意凸四邊形;④有一個角為60°的菱形.
(2)如圖1,將△ABC繞頂點C按順時針方向旋轉(zhuǎn)n°得到△EDC.
①連接AD,當(dāng)n=60,∠BAD=30°時,求證:四邊形ABCD是勾股四邊形.
②如圖2,將DE繞點E順時針方向旋轉(zhuǎn)得到EF,連接BF,BF與AE交于點P,連接CP,若∠DEF=(180-n)°,CP=2,AE=8,求AC的長度.

【考點】四邊形綜合題.
【答案】②③
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/1 18:0:1組卷:485引用:3難度:0.4
相似題
-
1.【教材呈現(xiàn)】如圖是華師版九年級上冊數(shù)學(xué)教材第77頁的部分內(nèi)容.
猜想:如圖,在△ABC中,點D、E分別是AB與AC的中點.
根據(jù)畫出的圖形,可以猜想:
DE∥BC,且DE=BC.12
對此,我們可以用演繹推理給出證明.
(2)【定理應(yīng)用】如圖②,已知矩形ABCD中,AD=6,CD=4,點P在BC上從B向C移動,R、E、F分別是DC、AP、RP的中點,則EF=.
(3)【拓展提升】在△ABC中,AB=12,點E是AC的中點,過點A作∠ABC平分線的垂線,垂足為點F,連結(jié)EF,若EF=2,則BC=.發(fā)布:2025/6/3 4:30:1組卷:259引用:2難度:0.2 -
2.如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.
(1)求證:△BAF≌△DEF;
(2)如圖2,過點D作DG∥BE,交BC于點G,連接FG交BD于點O.
①判斷四邊形BFDG的形狀,并說明理由;
②若AB=6,AD=8,求FG的長.發(fā)布:2025/6/3 5:30:1組卷:126引用:3難度:0.2 -
3.探究:如圖①,在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥m于點D,CE⊥m于點E,求證:△ABD≌△CAE.
應(yīng)用:如圖②,在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC.
求出DE、BD和CE的關(guān)系.
拓展:如圖①中,若DE=10.梯形BCED的面積 .發(fā)布:2025/6/3 1:0:1組卷:95引用:1難度:0.4