問題提出:

(1)如圖1,在△ABC中,∠B=90°,AC=6,當AB=BC時,△ABC的面積最大,最大值為 99.
問題探究:
(2)如圖2,在四邊形ABCD中,AB=BC,∠ABC=∠ADC=90°,且CD+AD=12,求四邊形ABCD的面積.
問題解決:
(3)為了迎接五一旅游高峰的到來,某景區將規劃四邊形區域ABCD作為觀景池,如圖3,按照設計要求,需滿足AB=AD,∠ABC+∠D=180°,AC=10,求觀景池ABCD面積的最大值.
【考點】四邊形綜合題.
【答案】9
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:306引用:3難度:0.4
相似題
-
1.如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動點P從點B出發,沿射線BC的方向以每秒2cm的速度運動到C點返回,動點Q從點A出發,在線段AD上以每秒1cm的速度向點D運動,點P,Q分別從點B,A同時出發,當點Q運動到點D時,點P隨之停止運動,設運動的時間t(秒).
(1)求DQ、PC的代數表達式;
(2)當t為何值時,四邊形PQDC是平行四邊形;
(3)當0<t<10.5時,是否存在點P,使△PQD是等腰三角形?若存在,請直接寫出所有滿足要求的t的值;若不存在,請說明理由.發布:2025/6/7 16:30:2組卷:243引用:5難度:0.2 -
2.如圖,在△ABC中,點O是AC邊上一個動點,過點O作直線MN∥BC,設MN交∠BCA的平分線于點E,交△BCA的外角∠ACG的平分線于點F.
(1)探究OE與OF的數量關系并加以以證明;
(2)連接BE,BF,當點O在邊AC上運動時,四邊形BCFE可能為菱形嗎?若可能,請證明;若不可能,請說明理由;
(3)連接AE,AF,當點O在AC上運動到什么位置時,四邊形AECF是矩形?請說明理由;
(4)在(3)的條件下,△ABC滿足什么條件時,四邊形AECF是正方形?請說明理由.發布:2025/6/7 17:0:1組卷:299引用:2難度:0.4 -
3.如圖,在Rt△ABC中,∠C=90°,AC=16厘米,BC=20厘米,點D在BC上,且CD=12厘米.現有兩個動點P,Q分別從點A和點B同時出發,其中點P以4厘米/秒的速度沿AC向終點C運動;點Q以5厘米/秒的速度沿BC向終點C運動.過點P作PE∥BC交AD于點E,連接EQ.設動點運動時間為t秒(t>0).
(1)CP=;(用t的代數式表示)
(2)連接CE,并運用割補的思想表示△AEC的面積(用t的代數式表示);
(3)是否存在某一時刻t,使四邊形EQDP是平行四邊形,如果存在,請求出t,如果不存在,請說明理由;
(4)當t為何值時,△EDQ為直角三角形.發布:2025/6/7 17:0:1組卷:348引用:3難度:0.1