三角形的布洛卡點( Brocardpoint)是法國數學家和數學教育家克洛爾(A.LCrelle1780-1855)于1816年首次發現,但他的發現并未被當時的人們所注意.1875年布洛卡點被一個數學愛好者法國軍官布洛卡( Brocard1845-1922)重新發現,并用他的名字命名.如圖1,若△ABC內一點P滿足∠PAB=∠PBC=∠PCA=∠α,則點P是△ABC的布洛卡點,∠α是布洛卡角.
(1)如圖2,點P為等邊三角形ABC的布洛卡點,則布洛卡角的度數是 30°30°;PA、PB、PC的數量關系是 PA=PB=PCPA=PB=PC;
(2)如圖3,點P為等腰直角三角形ABC(其中∠BAC=90°)的布洛卡點,且∠1=∠2=∠3.
①請找出圖中的一對相似三角形,并給出證明;
②若△ABC的面積為52,求△PBC的面積.

5
2
【考點】相似形綜合題.
【答案】30°;PA=PB=PC
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:736引用:5難度:0.2
相似題
-
1.在△ABC中,AB=AC,∠BAC=90°,點D,E分別是AC,BC的中點,點P是射線DE上一點,連接AP,將線段PA繞點P順時針旋轉90°得到線段PM,連接AM,CM.
(1)如圖①,當點P與點D重合時,線段CM與PE的數量關系是 ,∠ACM=°;
(2)如圖②當點P在射線DE上運動時(不與點D,E重合),求的值;PECM
(3)連接PC,當△PCM是等邊三角形時,請直接寫出的值.ACCM發布:2025/5/23 0:30:1組卷:370引用:2難度:0.1 -
2.如圖1,AB=AC=2CD,DC∥AB,將△ACD繞點C逆時針旋轉得到△FCE,使點D落在AC的點E處,AB與CF相交于點O,AB與EF相交于點G,連接BF.
(1)求證:△ABE≌△CAD;
(2)求證:AC∥FB;
(3)若點D,E,F在同一條直線上,如圖2,求的值.(溫馨提示:請用簡潔的方式表示角)ABBC發布:2025/5/23 1:0:1組卷:363引用:2難度:0.4 -
3.已知△ABC是等邊三角形,D是直線AB上的一點.
(1)問題背景:如圖1,點D,E分別在邊AB,AC上,且BD=AE,CD與BE交于點F,求證:∠EFC=60°;
(2)點G,H分別在邊BC,AC上,GH與CD交于點O,且∠HOC=60°.
①嘗試運用:如圖2,點D在邊AB上,且,求OHOG=43的值;ABBD
②類比拓展:如圖3,點D在AB的延長線上,且,直接寫出OHOG=256的值.ABBD發布:2025/5/23 1:0:1組卷:822引用:3難度:0.2