在平面直角坐標系xOy中,⊙O的半徑為1,對于⊙O和⊙O外的點P,給出如下的定義:若在⊙O上存在一點Q,使得P、Q兩點間的距離小于或等于1,則稱P為⊙O的近距點.
(1)在點P1(1,1),P2(-12,32),P3(0,-12),P4(2,1)中,⊙O的近距點是 P1P1;
(2)若直線l:y=x+b上存在⊙O的近距點,直接寫出字母b的取值范圍;
(3)若點P在直線y=x+1上,且點P是⊙O的近距點,求點P橫坐標xP的取值范圍.
(
-
1
2
,
3
2
)
-
1
2
【考點】圓的綜合題.
【答案】P1
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:28引用:1難度:0.3
相似題
-
1.小亮學習了圓周角定理的推論“圓內接四邊形對角互補”后,勇于思考大膽創新,并結合三角形的角平分線的性質進行了以下思考和發現:
(1)①如圖1,四邊形ABCD是⊙O的內接四邊形,若∠B=85°,則∠ADE=;
②如圖2,在△ABC中,BE,CE分別平分∠ABC和∠ACD,BE,CE相交于點E,∠A=42°,則∠E=°;
(2)小亮根據這個發現,又進行了以下深入研究:
如圖3,四邊形ABCD內接于⊙O,對角線BD是⊙O的直徑,AC=BC,點F是弧AD的中點,求∠E的度數[(1)中的結論可直接用].發布:2025/5/24 19:30:1組卷:127引用:1難度:0.4 -
2.如圖1,在等腰△ABC中,AB=AC,AO平分∠BAC且交BC于點O,AB與⊙O相切于點D,OC交⊙O于點H,連接OD.
(1)求證:AC是⊙O的切線;
(2)延長DO、AC交于點E,若CE=OC,求證:OA=OE;
(3)在(2)的條件下,連接DH交AO于點K,若OK?AK=8-12,求⊙O的半徑并直接寫出DK?HK的值.3發布:2025/5/24 19:30:1組卷:184引用:1難度:0.1 -
3.點E為正方形ABCD的邊CD上一動點,直線AE與BD相交于點F,與BC的延長線相交于點G.
(1)如圖①,若正方形的邊長為2,設DE=x,△DEG的面積為y,求y與x的函數關系;
(2)如圖②,求證:CF是△ECG的外接圓的切線;
(3)如果把正方形ABCD換成是矩形或菱形,(2)的結論是否仍然成立?發布:2025/5/24 18:30:1組卷:91引用:1難度:0.1