已知函數(shù)f(x)=ax+bx+2ln(1-x),曲線y=f(x)在(-1,f(-1))處的切線方程為y+3-2ln2=0.
(1)求a,b的值;
(2)求函數(shù)f(x)的定義域及單調(diào)區(qū)間;
(3)求函數(shù)f(x)的零點的個數(shù).
b
x
+
2
ln
(
1
-
x
)
【答案】(1)a=2,b=1;
(2)(-∞,0)∪(0,1);遞增區(qū)間為(-∞,-1),單調(diào)遞減區(qū)間為(-1,0),(0,1);
(3)1.
(2)(-∞,0)∪(0,1);遞增區(qū)間為(-∞,-1),單調(diào)遞減區(qū)間為(-1,0),(0,1);
(3)1.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/7 1:0:1組卷:131引用:4難度:0.3
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:236引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( )
A.(-∞,-1)∪(0,1) B.(-2,-1)∪(1,2) C.(-1,0)∪(1,+∞) D.(-∞,-2)∪(2,+∞) 發(fā)布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:143引用:2難度:0.2