如圖,直角坐標系中,平行四邊形OABC的邊OA=8,OC=42,∠AOC=45°,點P以每秒2個單位的速度從點C向點B運動,同時,點Q以每秒2個單位的速度從點O向點C運動.當其中一點到達終點時,兩點都停止運動,設運動時間為t.
?
(1)求出點C,B的坐標;
(2)當t為何值時,AP⊥CB?
(3)在(2)的條件下,在平面內是否存在點M,使得以A、P、Q、M為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
2
2
【考點】四邊形綜合題.
【答案】(1)B(12,4),C(4,4);
(2)t=2;
(3)存在,點M的坐標為(2,-2)或(2,6)或(14,2).
(2)t=2;
(3)存在,點M的坐標為(2,-2)或(2,6)或(14,2).
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/22 8:0:10組卷:66引用:2難度:0.3
相似題
-
1.(1)如圖1,在四邊形ABCD中,AB=AD,∠B=∠ADC=90°,點E、F分別在邊BC、CD上,且EF=BE+DF,探究圖中∠BAE、∠FAD、∠EAF之間的數量關系.
小明探究的方法是:延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論是 .
(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,且EF=BE+DF,探究上述結論是否仍然成立,并說明理由.
(3)如圖3,在四邊形ABCD中,AB=AD,∠ABC+∠ADC=180°,若點E在CB的延長線上,點F在CD的延長線上,仍然滿足EF=BE+FD,請直接寫出∠EAF與∠DAB的數量關系為 .發布:2025/5/31 3:30:1組卷:181引用:2難度:0.1 -
2.如圖,在△ABC中,∠ABC=90°,∠ACB=30°,將△ABC繞點C順時針旋轉60°能與△DEC重合.
(1)請用尺規作圖法,作AC的垂直平分線,垂足為F;(不要求寫作法,保留作圖痕跡)
(2)在(1)問情況下,連接DF,求證:△CFD≌△ABC(填空);
證明:(2)∵點F是邊AC中點,
∴CF=,
∵∠BCA=30°,∠ABC=90°
∴BA=AC,∠A=60°,12
∴AB=,
∵將△ABC繞點C順時針旋轉60°得到△DEC,
∴AC=CD,∠FCD=60°,
∴∠A=,
在△ABC和△CFD中,,①:AB=CF∠A=∠FCD(①)
∴△ABC≌△CFD(SAS);
(3)在(1)問情況下,連接BE,BF,DF,求證:四邊形BEDF是平行四邊形.發布:2025/5/31 5:30:3組卷:26引用:1難度:0.4 -
3.綜合與實踐圖形的幾何變換
復習課上,老師對一張平行四邊形紙片ABCD(AD>AB)進行如下操作:
(1)如圖1,折疊該紙片,使邊AB恰好落在邊AD上,邊CD恰好落在邊CB上,得到折痕AE和CF,判斷四邊形AECF的形狀并說明理由;
(2)老師沿折痕將△ABE和△CDF剪下,得到兩個全等的等腰三角形,已知等腰三角形的腰長為5,底邊長為6,底角度數為α,通過不同的擺放方式,三個學習小組利用幾何變換設置了幾個問題,請一一解答.
①善思小組:
將兩個三角形擺放成如圖2的位置,使邊CF與邊EA重合,然后固定△ABE,將△CDF沿著射線EA的方向平移,如圖3,當四邊形FBED為矩形時,求平移的距離;
②勤學小組:
將兩個三角形擺成如圖4的位置,使△BAE與△DFC重合,取AE的中點O,固定△ABE,將△CDF繞著點O按逆時針方向旋轉(0°<旋轉角<360°),如圖5,在旋轉過程中,四邊形ACEF的形狀是 .
③奮進小組:
在上面的旋轉過程中,利用圖6進行探究,當△BAE與△DFC的重疊部分為等腰三角形時,旋轉角為 (用含α的代數式表示),此時重疊部分的面積為 .發布:2025/5/30 23:30:1組卷:313引用:2難度:0.1